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For a discrete random variable, the moment-generating function is defined, formally, as

mX(t) =

∞∑
k=0

tk

k!
E[Xk]

We would like to show that
E[etX ] = mX(t)

if E[etX ] is real-analytic (i.e., has a power series expansion) for −ε < t < ε and some ε > 0.

Formally, this looks simple, since we can just write

mX(t) =

∞∑
j=0

tj

j!
E[Xj ] = E

[ ∞∑
j=0

tj

j!
Xj

]
= E[etX ]

but if we want to properly justify taking the infinite series into the expectation, then we have to do some work.
(A finite sum would be no problem, since we assume that E[X+Y ] = E[X]+E[Y ] and this additivity can easily
be extended to finite sums. But the infinite series is a little tricky.)

We only discuss the case of a discrete random variable. Suppose that X : S → Ω for some sample space S and
a countable Ω ⊂ R. Since Ω is countable, we can write Ω = {xk : k ∈ N} for some sequence of real numbers
(xk).

Then, the calculation we would like to do runs as follows:

mX(t) = lim
n→∞

n∑
j=0

tj

j!
E[Xj ] = lim

n→∞
E
[ n∑
j=0

tj

j!
Xj

]
= lim

n→∞

∞∑
k=0

n∑
j=0

tj

j!
xj
kfX(xk)

= lim
n→∞

∞∑
k=0

φn(k) (1)

=

∞∑
k=0

lim
n→∞

φn(k)

=

∞∑
k=0

etxkfX(xk)

= E[etX ].

Here, we have set

φn(k) := fX(xk)

n∑
j=0

tj

j!
xj
k

and of course

lim
n→∞

φn(k) = fX(xk)

∞∑
j=0

tj

j!
xj
k = etxkfX(xk)

exists for every k ∈ N. The problematic step is clearly the exchange of limit and summation in (1). To justify
this, we need to bring in one of the “big guns” of analysis, the dominated convergence theorem. For the discrete
sums here, a simplified form is sufficient:

Lemma 1. Let (φn) be a sequence of functions φn : N → R such that |φn| ≤ g for some function g : N → R.
Suppose that the pointwise limit

lim
n→∞

φn(k) =: φ(k) exists for any k ∈ N.

and that
∞∑
k=0

g(k) < ∞. (2)

Then

lim
n→∞

∞∑
k=0

φn(k) =

∞∑
k=0

φ(k). (3)



In our case, we know that the limits of the φn exist, so we only need to find a dominating function g that
satisfies (2). By our assumptions,

E[etX ] =

∞∑
k=0

exktfX(xk) converges for any −ε < t < ε.

Then, for 0 ≤ t < ε,
∞∑
k=0

exktfX(xk) +

∞∑
k=0

e−xktfX(xn)

converges (absolutely) and so does
∞∑
k=0

(exkt + e−xkt)fX(xk)

Since e|xn|t ≤ exkt + e−xkt, this implies that

∞∑
k=0

e|xk|tfX(xk)

converges for t > 0 and
∞∑
k=0

e|xkt|fX(xk)

converges for any −ε < t < ε. So we can set

g(k) := e|xkt|fX(xk).

Since

|φn(xk)| ≤ fX(xk)

n∑
j=0

|txk|j

j!
≤ e|xkt|fX(xk) = g(k),

we can apply Lemma 1 to justify the exchaange of summation and limit in (1).

Proof of Lemma 1. Let (φn), g and φ be given as in the lemma. We want to prove that for every ε > 0 there
exists an N ∈ N so that

∞∑
k=0

φn(k) >

∞∑
k=0

φ(k)− ε for all n > N . (4)

If we can show (4) for our (φn) with φn(k) → φ(k) for each k, then by applying the result to −φn, we obtain

∞∑
k=0

φn(k) <

∞∑
k=0

φ(k) + ε for all n > N . (5)

Putting (4) and (5) together, we will have shown that for every ε > 0 there exists an N ∈ N such that for all
n > N ∣∣∣∣ ∞∑

k=0

φn(k)−
∞∑
k=0

φ(k)

∣∣∣∣ < ε.

This is just the statement (3) and we are done.

To prove (4), we want to be able to assume that φn(k) ≥ 0. This is where the dominating function g comes in:
φn(k) → φ(k) if and only if φn(k) + g(k) → φ(k) + g(k). Since |φn(k)| ≤ g(k), φn(k) + g(k) ≥ 0 and, adding∑∞

k=0 g(k) to both sides of (4), we have

∞∑
k=0

(φn(k) + g(k))︸ ︷︷ ︸
≥0

>

∞∑
k=0

(φ(k) + g(k))︸ ︷︷ ︸
≥0

−ε for all n > N .

So, due to the existence of the dominating function, we can henceforth assume that φn(k) ≥ 0 and φ(k) ≥ 0
and return to proving (4).



Given ε > 0, we can choose N1 ∈ N such that

N1∑
k=0

φ(k) >

∞∑
k=0

φ(k)− ε

2

(this uses that φn(k) ≥ 0). Next, choose N2 ∈ N such that for all n > N2

φn(k) > φ(k)− ε/[2(N1 + 1)] for all k = 0, . . . , N1.

(It’s not possible to do this for an infinite number of ks, but we can find such an N2 for each individual k and
then simply take the largest one, which will work for all k = 0, . . . , N .) Then we put everything together:

∞∑
k=0

φn(k) ≥
N1∑
k=0

φn(k)

>

N1∑
k=0

φ(k)− ε

2

>

∞∑
k=0

φ(k)− ε

This completes the proof.

Remark 1. The proof for continuous random variable is basically the same, but one needs the dominated
convergence theorem for integrals, which is a bit more technically difficult to prove.


