

Horst Hohberger

1 Vector Space Structure

Given a sample space (S, \mathcal{F}, P) we may consider the set of all random variables

$$X\colon S\to\mathbb{R}$$

on that space. Let us denote this set by V. Then V contains, for example, the constant random variables

$$X_c: S \to \mathbb{R}, \qquad \qquad X_c(p) = c \quad \text{for all } p \in S,$$

where $c \in \mathbb{R}$ is a fixed constant (any element of the sample space is mapped to the same number c.). For simplicity, we often denote X_c simply by c. We can add two elements $X, Y \in V$ by defining

$$(X+Y)(p) := X(p) + Y(p)$$

and we can multiply with a real number $\lambda \in \mathbb{R}$ by setting

$$(\lambda X)(p) = \lambda \cdot X(p).$$

(These are the usual *point-wise* definitions for sums and scalar multiples of functions.) In this way, V becomes a real vector space.

If we want to have V include only discrete or only continuous random variables, we can modify these definitions accordingly.

Remark 1. We can also multiply two random variables, defining

$$(X \cdot Y)(p) := X(p) \cdot Y(p).$$

2 Expectation

For a discrete random variable X with density f_X we define the *expectation*

$$E[X] := \sum_{x \in \operatorname{ran} X} x \cdot f_X(x) \tag{1}$$

and, more generally, if $g: \mathbb{R} \to \mathbb{R}$ is a continuous function, we find that

$$E[g(X)] = \sum_{x \in \operatorname{ran} X} g(x) \cdot f_X(x).$$
(2)

If X is a continuous random variable, the analogous definiton is

$$\mathbf{E}[g(X)] := \int_{\mathbb{R}} g(x) \cdot f_X(x) \, dx$$

Remark 2. Of course, Y = g(X) is a random variable in its own right with density f_Y . It can be shown that E[g(x)] by (2) and E[Y] by (1) coincide.

We immediately see that if X is a constant random variable,

$$\mathbb{E}[X_c] = c$$

and that

$$\mathbf{E}[\lambda \cdot X] = \lambda \cdot \mathbf{E}[X].$$

Given two random variables X and Y (either both discrete or both continuous), it can be shown that

$$\mathbf{E}[X+Y] = \mathbf{E}[X] + \mathbf{E}[Y].$$

We postpone the proof of this relation.

3 Almost Sure Equality and Partition of V

We will say that two random variables X and Y are equal *almost surely* if

$$P[X \le x] = P[Y \le x] \qquad \text{for all } x \in \mathbb{R}.$$

We then write X = Y a.s.

In particular, if X and Y are discrete random variables with common domain $\Omega \subset \mathbb{R}$ and densities f_X and f_Y , respectively, this implies

$$\sum_{z \le x} f_X(z) = \sum_{z \le x} f_Y(z).$$

from which we can deduce $f_X(x) = f_Y(x)$ for all $x \in \Omega$.

If X and Y are continuous random variables, then X = Y almost surely means that

$$\int_{-\infty}^{x} f_X(z) \, dz = \int_{-\infty}^{x} f_Y(z) \, dz$$

in which case f_X and f_Y may differ on sets of measure zero.

We can define an equivalence relation \sim on V by saying that X and Y are equivalent $(X \sim Y)$ if they are equal almost surely. We then denote the set of equivalence classes (partition) by V/\sim , which is of course again a vector space.

4 Chebyshev Inequality

A random variable X is said to be *positive* if P[X < 0] = 0. In that case, $f_X(x) = 0$ for x < 0. Example 1. If X is a random variable, then $Y = X^2$ is positive, since

$$P[Y \le y] = P[X^2 \le y] = \begin{cases} 0 & y < 0\\ P[-\sqrt{y} \le X \le \sqrt{y}] & \text{otherwise.} \end{cases}$$

Let X be a positive random variable and y > 0 be fixed. Then

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx = \int_0^{\infty} x f_X(x) \, dx$$
$$\geq \int_y^{\infty} x f_X(x) \, dx \geq \int_y^{\infty} y f_X(x) \, dx$$
$$= y \cdot P[X \ge y]$$

Hence, we obtain a version of the Chebyshev inequality,

$$P[X \ge y] \le \frac{E[X]}{y}$$

We would like to prove the following result:

Lemma 1. Let X be a positive random variable and suppose that E[X] = 0. Then X = 0 almost surely.

Proof. We first note that

$$P[X < 0] + P[X = 0] + P[X > 0] = 1.$$

Since P[X < 0] = 0 by assumption, it remains to show P[X > 0] = 0. Then P[X = 0] = 1, which means that X = 0 almost surely.

Note that X > 0 is equivalent to stating that X > 1/n for some $n \in \mathbb{N} \setminus \{0\}$ and so

$$\{p \in S \colon X(p) > 0\} = \bigcup_{n \in \mathbb{N} \setminus \{0\}} \{p \in S \colon X(p) > 1/n\}$$

By Boole's inequality $(P[A \cup B] \leq P[A] + P[B])$, this implies that

$$P[X > 0] \le \sum_{n=1}^{\infty} P[X > 1/n]$$

Applying Chebyshev's inequality,

$$P[X \ge 1/n] \le \frac{E[X]}{y} = 0$$

and so P[X > 0] = 0.

5 A Scalar Product on V/\sim

Recall that a scalar product on a real vector space V is a map $\langle \cdot, \cdot \rangle \colon V \to \mathbb{R}$ with the properties

- i) $\langle u, u \rangle \ge 0$,
- ii) $\langle u, u \rangle = 0$ if and only if u = 0,

iii)
$$\langle u, v \rangle = \langle v, u \rangle,$$

- iv) $\langle u, \lambda v \rangle = \lambda \cdot \langle u, v \rangle$,
- v) $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$

for all $u, v, w \in V$ and $\lambda \in \mathbb{R}$. We now claim that

$$\langle X, Y \rangle := \mathbb{E}[XY] \tag{3}$$

defines a scalar product on the set V/\sim . We will show this for the case of V being the set of continuous random variables only; the discrete case is completely analogous.

- i) $\langle X, X \rangle := \mathbb{E}[X^2] = \int_{\mathbb{R}} x^2 f_X(x) \, dx \ge 0$ since $f_X(x) \ge 0$ for all $x \in \mathbb{R}$.
- ii) X = 0 implies $E[X^2] = E[0] = 0$. Conversely, $E[X^2] = 0$ implies X = 0 almost surely (since X^2 is positive, $X^2 = 0$ almost surely by Lemma 1 and hence X = 0 almost surely). But then X = 0 in V/\sim .
- iii) E[XY] = E[YX]
- iv) $E[X(\lambda Y)] = E[\lambda XY] = \lambda E[XY]$
- v) E[X(Y+Z)] = E[XY+XZ] = E[XY] + E[XZ].

Since (3) defines a scalar product on a vector space, we know that the Cauchy-Schwartz inequality holds,

$$\mathbf{E}[XY]^2 \le \mathbf{E}[X^2] \cdot \mathbf{E}[Y^2]$$

and, in particular,

$$E[XY]^2 = E[X^2] \cdot E[Y^2]$$
 if and only if $X = \lambda \cdot Y$ a.s. for some $\lambda \in \mathbb{R}$.

Remark 3. Should we need to recall a proof of the Cauchy-Schwartz inequality, here is one: Let u, v be arbitrary vectors in a vector space. Write $||u|| := \sqrt{\langle u, u \rangle}$, e := v/||v||. Then $\langle e, e \rangle = \langle v, v \rangle/||v||^2 = 1$ and

$$0 \le ||u - \langle e, u \rangle e||^2 = \langle u - \langle e, u \rangle e, u - \langle e, u \rangle e \rangle$$
$$= ||u||^2 - |\langle e, u \rangle|^2$$

It follows that

$$|\langle u, v \rangle|^2 = ||v||^2 \cdot |\langle u, e \rangle|^2 \le ||u||^2 \cdot ||v||^2$$

Suppose that

$$|\langle u, v \rangle|^2 = ||u||^2 \cdot ||v||^2.$$

This is equivalent to $|\langle e, u \rangle|^2 = ||u||^2$ or $||u - \langle e, u \rangle e|| = 0$, which in turn means that

$$u = \langle e, u \rangle e = \frac{\langle v, u \rangle}{\langle v, v \rangle} v.$$

6 Variance and Covariance

From the point of view of linear algebra, $E[X^2]$ defines the square of the norm of X, i.e., it gives a measure of the size of X. However, this has little meaning in probability theory. What is of interest, instead, is the size of the difference between X and its mean $\mu := E[X]$. Therefore, we define

$$\operatorname{Var}[X] := \operatorname{E}[(X - \mu)^2]$$

(which is the square of the norm of the difference between X and the constant random variable X_{μ} .) The standard deviation σ is defined to be the positive square root of the variance and is therefor analogous to the norm of $X - \mu$. We often use σ^2 to denote the variance.

Remark 4. In probability theory, taking an analogy to mechanics, one calls E[X] the *first moment* of X, $E[X^2]$ the *second moment* and generally $E[X^k]$ the *k*th moment of X. When the mean is subtracted, the corresponding moment is said to be *centered*. Trivially, the centered first moment vanishes, $E[X - \mu] = 0$. Hence, the variance is the centered second moment.

It is sometimes useful to note that

$$\operatorname{Var}[X] = \operatorname{E}[X^2] - \operatorname{E}[X]^2$$

and that

$$\operatorname{Var}[\lambda \cdot X] = \lambda^2 \cdot \operatorname{Var}[X],$$
 $\operatorname{Var}[X_c] = 0$ for a constant random variable $X_c.$

Given two random variables X and Y, we define the covariance of X and Y through the scalar product

$$\langle X - \mu_X, Y - \mu_Y \rangle = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] =: \operatorname{Cov}[X, Y].$$

It is then easy to check that

$$\operatorname{Var}[X+Y] = \operatorname{Var}[X] + \operatorname{Var}[Y] + 2\operatorname{Cov}[X,Y]$$

as would be expected from linear algebra. As for the variance, it is not difficult to show that

$$\operatorname{Cov}[X, Y] = \operatorname{E}[XY] - \operatorname{E}[X]\operatorname{E}[Y].$$

We standardize a random variable by subracting its mean and dividing by the standard deviation, where we use that

$$\operatorname{Var}[X - \mu] = \operatorname{Var}[X] = \sigma^2$$

i.e., a standardized X is given by

$$\frac{X-\mu}{\sigma}$$

This corresponds to a normalized vector (of unit lenth) in linear algebra. Note that $\frac{X-\mu}{\sigma}$ has mean zero and unit variance, so

$$\operatorname{E}\left[\left(\frac{X-\mu}{\sigma}\right)^{2}\right] = \operatorname{Var}\left[\frac{X-\mu}{\sigma}\right] + \operatorname{E}\left[\frac{X-\mu}{\sigma}\right]^{2} = 1.$$

7 Correlation Coefficient

In linear algebra, the scalar product is a measure for the angle between vectors. In probability theory, the corresponding concept is called *correlation*. Given two random variables X and Y, we define the correlation coefficient ρ_{XY} by

$$\varrho_{XY} := \operatorname{Cov}\left[\frac{X - \mu_X}{\sigma_X}, \frac{Y - \mu_Y}{\sigma_Y}\right] = \frac{\operatorname{Cov}[X, Y]}{\sigma_X \sigma_Y}$$

From the Cauchy-Schwartz inequality, we see immediately that

$$\varrho_{XY}^2 \le \mathbf{E}\left[\left(\frac{X-\mu_X}{\sigma_X}\right)^2\right]\mathbf{E}\left[\left(\frac{Y-\mu_Y}{\sigma_Y}\right)^2\right] = 1$$

and $\rho_{XY}^2 = 1$ if and only if

$$\frac{X - \mu_X}{\sigma_X} = \lambda \cdot \frac{Y - \mu_Y}{\sigma_Y} \qquad \text{a.s. for some } \lambda \in \mathbb{R}.$$

Hence, $|\varrho_{XY}| = 1$ of and only if for some $\beta_0, \beta_1 \in \mathbb{R}$ we have

$$Y = \beta_1 X + \beta_0$$

almost surely.