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1 Vector Space Structure

Given a sample space (S,F , P ) we may consider the set of all random variables

X : S → R

on that space. Let us denote this set by V . Then V contains, for example, the constant random variables

Xc : S → R, Xc(p) = c for all p ∈ S,

where c ∈ R is a fixed constant (any element of the sample space is mapped to the same number c.). For
simplicity, we often denote Xc simply by c. We can add two elements X,Y ∈ V by defining

(X + Y )(p) := X(p) + Y (p)

and we can multiply with a real number λ ∈ R by setting

(λX)(p) = λ ·X(p).

(These are the usual point-wise definitions for sums and scalar multiples of functions.) In this way, V becomes
a real vector space.

If we want to have V include only discrete or only continuous random variables, we can modify these definitions
accordingly.

Remark 1. We can also multiply two random variables, defining

(X · Y )(p) := X(p) · Y (p).

2 Expectation

For a discrete random variable X with density fX we define the expectation

E[X] :=
∑

x∈ranX

x · fX(x) (1)

and, more generally, if g : R → R is a continuous function, we find that

E[g(X)] =
∑

x∈ranX

g(x) · fX(x). (2)

If X is a continuous random variable, the analogous definiton is

E[g(X)] :=

∫
R
g(x) · fX(x) dx.

Remark 2. Of course, Y = g(X) is a random variable in its own right with density fY . It can be shown that
E[g(x)] by (2) and E[Y ] by (1) coincide.

We immediately see that if X is a constant random variable,

E[Xc] = c

and that
E[λ ·X] = λ · E[X].

Given two random variables X and Y (either both discrete or both continuous), it can be shown that

E[X + Y ] = E[X] + E[Y ].

We postpone the proof of this relation.



3 Almost Sure Equality and Partition of V

We will say that two random variables X and Y are equal almost surely if

P [X ≤ x] = P [Y ≤ x] for all x ∈ R.

We then write X = Y a.s.

In particular, if X and Y are discrete random variables with common domain Ω ⊂ R and densities fX and fY ,
respectively, this implies ∑

z≤x

fX(z) =
∑
z≤x

fY (z).

from which we can deduce fX(x) = fY (x) for all x ∈ Ω.

If X and Y are continuous random variables, then X = Y almost surely means that∫ x

−∞
fX(z) dz =

∫ x

−∞
fY (z) dz

in which case fX and fY may differ on sets of measure zero.

We can define an equivalence relation ∼ on V by saying that X and Y are equivalent (X ∼ Y ) if they are equal
almost surely. We then denote the set of equivalence classes (partition) by V/ ∼, which is of course again a
vector space.

4 Chebyshev Inequality

A random variable X is said to be positive if P [X < 0] = 0. In that case, fX(x) = 0 for x < 0.

Example 1. If X is a random variable, then Y = X2 is positive, since

P [Y ≤ y] = P [X2 ≤ y] =

{
0 y < 0

P [−√
y ≤ X ≤ √

y] otherwise.

Let X be a positive random variable and y > 0 be fixed. Then

E[X] =

∫ ∞

−∞
xfX(x) dx =

∫ ∞

0

xfX(x) dx

≥
∫ ∞

y

xfX(x) dx ≥
∫ ∞

y

yfX(x) dx

= y · P [X ≥ y]

Hence, we obtain a version of the Chebyshev inequality,

P [X ≥ y] ≤ E[X]

y

We would like to prove the following result:

Lemma 1. Let X be a positive random variable and suppose that E[X] = 0. Then X = 0 almost surely.

Proof. We first note that
P [X < 0] + P [X = 0] + P [X > 0] = 1.

Since P [X < 0] = 0 by assumption, it remains to show P [X > 0] = 0. Then P [X = 0] = 1, which means that
X = 0 almost surely.

Note that X > 0 is equivalent to stating that X > 1/n for some n ∈ N \ {0} and so

{p ∈ S : X(p) > 0} =
∪

n∈N\{0}

{p ∈ S : X(p) > 1/n}

By Boole’s inequality (P [A ∪B] ≤ P [A] + P [B]), this implies that

P [X > 0] ≤
∞∑

n=1

P [X > 1/n].

Applying Chebyshev’s inequality,

P [X ≥ 1/n] ≤ E[X]

y
= 0.

and so P [X > 0] = 0.



5 A Scalar Product on V/ ∼
Recall that a scalar product on a real vector space V is a map ⟨ · , · ⟩ : V → R with the properties

i) ⟨u, u⟩ ≥ 0,

ii) ⟨u, u⟩ = 0 if and only if u = 0,

iii) ⟨u, v⟩ = ⟨v, u⟩,

iv) ⟨u, λv⟩ = λ · ⟨u, v⟩,

v) ⟨u, v + w⟩ = ⟨u, v⟩+ ⟨u,w⟩

for all u, v, w ∈ V and λ ∈ R.
We now claim that

⟨X,Y ⟩ := E[XY ] (3)

defines a scalar product on the set V/ ∼. We will show this for the case of V being the set of continuous random
variables only; the discrete case is completely analogous.

i) ⟨X,X⟩ := E[X2] =
∫
R x2fX(x) dx ≥ 0 since fX(x) ≥ 0 for all x ∈ R.

ii) X = 0 implies E[X2] = E[0] = 0. Conversely, E[X2] = 0 implies X = 0 almost surely (since X2 is positive,
X2 = 0 almost surely by Lemma 1 and hence X = 0 almost surely). But then X = 0 in V/ ∼.

iii) E[XY ] = E[Y X]

iv) E[X(λY )] = E[λXY ] = λE[XY ]

v) E[X(Y + Z)] = E[XY +XZ] = E[XY ] + E[XZ].

Since (3) defines a scalar product on a vector space, we know that the Cauchy-Schwartz inequality holds,

E[XY ]2 ≤ E[X2] · E[Y 2]

and, in particular,

E[XY ]2 = E[X2] · E[Y 2] if and only if X = λ · Y a.s. for some λ ∈ R.

Remark 3. Should we need to recall a proof of the Cauchy-Schwartz inequality, here is one:

Let u, v be arbitrary vectors in a vector space. Write ∥u∥ :=
√
⟨u, u⟩, e := v/∥v∥. Then ⟨e, e⟩ = ⟨v, v⟩/∥v∥2 = 1

and

0 ≤ ∥u− ⟨e, u⟩e∥2 = ⟨u− ⟨e, u⟩e, u− ⟨e, u⟩e⟩
= ∥u∥2 − |⟨e, u⟩|2

It follows that

|⟨u, v⟩|2 = ∥v∥2 · |⟨u, e⟩|2 ≤ ∥u∥2 · ∥v∥2.

Suppose that
|⟨u, v⟩|2 = ∥u∥2 · ∥v∥2.

This is equivalent to |⟨e, u⟩|2 = ∥u∥2 or ∥u− ⟨e, u⟩e∥ = 0, which in turn means that

u = ⟨e, u⟩e = ⟨v, u⟩
⟨v, v⟩

v.



6 Variance and Covariance

From the point of view of linear algebra, E[X2] defines the square of the norm of X, i.e., it gives a measure of
the size of X. However, this has little meaning in probability theory. What is of interest, instead, is the size of
the difference between X and its mean µ := E[X]. Therefore, we define

Var[X] := E[(X − µ)2]

(which is the square of the norm of the difference between X and the constant random variable Xµ.) The
standard deviation σ is defined to be the positive square root of the variance and is therefor analogous to the
norm of X − µ. We often use σ2 to denote the variance.

Remark 4. In probability theory, taking an analogy to mechanics, one calls E[X] the first moment of X, E[X2]
the second moment and generally E[Xk] the kth moment of X. When the mean is subtracted, the corresponding
moment is said to be centered. Trivially, the centered first moment vanishes, E[X −µ] = 0. Hence, the variance
is the centered second moment.

It is sometimes useful to note that
Var[X] = E[X2]− E[X]2.

and that

Var[λ ·X] = λ2 ·Var[X], Var[Xc] = 0 for a constant random variable Xc.

Given two random variables X and Y , we define the covariance of X and Y through the scalar product

⟨X − µX , Y − µY ⟩ = E
[
(X − µX)(Y − µY )

]
=: Cov[X,Y ].

It is then easy to check that

Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X,Y ].

as would be expected from linear algebra. As for the variance, it is not difficult to show that

Cov[X,Y ] = E[XY ]− E[X] E[Y ].

We standardize a random variable by subracting its mean and dividing by the standard deviation, where we
use that

Var[X − µ] = Var[X] = σ2,

i.e., a standardized X is given by
X − µ

σ
.

This corresponds to a normalized vector (of unit lenth) in linear algebra. Note that X−µ
σ has mean zero and

unit variance, so

E

[(
X − µ

σ

)2
]
= Var

[
X − µ

σ

]
+ E

[
X − µ

σ

]2
= 1.

7 Correlation Coefficient

In linear algebra, the scalar product is a measure for the angle between vectors. In probability theory, the
corresponding concept is called correlation. Given two random variables X and Y , we define the correlation
coefficient ϱXY by

ϱXY := Cov

[
X − µX

σX
,
Y − µY

σY

]
=

Cov[X,Y ]

σXσY

From the Cauchy-Schwartz inequality, we see immediately that

ϱ2XY ≤ E

[(
X − µX

σX

)2
]
E

[(
Y − µY

σY

)2
]
= 1

and ϱ2XY = 1 if and only if

X − µX

σX
= λ · Y − µY

σY
a.s. for some λ ∈ R.

Hence, |ϱXY | = 1 of and only if for some β0, β1 ∈ R we have

Y = β1X + β0

almost surely.
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