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1 Vector Space Structure

Given a sample space (S, F, P) we may consider the set of all random variables
X:S—>R
on that space. Let us denote this set by V. Then V contains, for example, the constant random variables
X.: 85— R, Xc(p)=c forallpe s,

where ¢ € R is a fixed constant (any element of the sample space is mapped to the same number ¢.). For
simplicity, we often denote X, simply by c. We can add two elements X,Y € V by defining

(X +Y)(p) :== X(p) +Y(p)
and we can multiply with a real number A € R by setting
(AX)(p) = A- X(p).

(These are the usual point-wise definitions for sums and scalar multiples of functions.) In this way, V' becomes
a real vector space.

If we want to have V include only discrete or only continuous random variables, we can modify these definitions
accordingly.

Remark 1. We can also multiply two random variables, defining

(X-Y)(p):=X(p) Y(p).

2 Expectation

For a discrete random variable X with density fx we define the expectation
EX]:= ) =z fx(o) (1)
zreran X
and, more generally, if g: R — R is a continuous function, we find that
Elg(X)= > g() fx(2). (2)
r€ran X
If X is a continuous random variable, the analogous definiton is

E[g(X)] = / g(x) - fx(x)du.

R

Remark 2. Of course, Y = g(X) is a random variable in its own right with density fy. It can be shown that
E[g(z)] by (2) and E[Y] by (1) coincide.

We immediately see that if X is a constant random variable,
E[X.]=c¢

and that
E[A- X] = X-E[X].

Given two random variables X and Y (either both discrete or both continuous), it can be shown that
E[X +Y] =E[X]+ E[Y].

We postpone the proof of this relation.



3 Almost Sure Equality and Partition of V'

We will say that two random variables X and Y are equal almost surely if
P[X <z]=P[Y < 1] for all z € R.

We then write X =Y a.s.
In particular, if X and Y are discrete random variables with common domain {2 C R and densities fx and fy,

respectively, this implies
> ix(2) =) (=)

z<x z<x
from which we can deduce fx(z) = fy(x) for all x € 2.
If X and Y are continuous random variables, then X =Y almost surely means that

/;fx(Z)dZ/;fy(Z)dZ

in which case fx and fy may differ on sets of measure zero.

We can define an equivalence relation ~ on V' by saying that X and Y are equivalent (X ~ Y') if they are equal
almost surely. We then denote the set of equivalence classes (partition) by V/ ~, which is of course again a
vector space.

4 Chebyshev Inequality

A random variable X is said to be positive if P[X < 0] = 0. In that case, fx(z) =0 for z < 0.

Example 1. If X is a random variable, then Y = X? is positive, since

0 y<0

PlY <y]=P[X?<y] = {P[—\/ﬂ <X <,/y] otherwise.

Let X be a positive random variable and y > 0 be fixed. Then

E[X]:/Oo xfx(x)dx:/oocxfx(x)dx

— 00

> / xfx(z)dx > / yfx(x)dx
Y Yy
=y P[X >y
Hence, we obtain a version of the Chebyshev inequality,
E
PIX 2 y| < ElX]
Y
We would like to prove the following result:

Lemma 1. Let X be a positive random variable and suppose that E[X] = 0. Then X = 0 almost surely.

Proof. We first note that
P[X < 0]+ P[X = 0] + P[X > 0] = 1.
Since P[X < 0] = 0 by assumption, it remains to show P[X > 0] = 0. Then P[X = 0] = 1, which means that
X =0 almost surely.
Note that X > 0 is equivalent to stating that X > 1/n for some n € N\ {0} and so

{pes:X(p)>0y= |J {pes: X >1/n}
neN\{0}

By Boole’s inequality (P[A U B] < P[A] 4+ P[B]), this implies that

PIX >0] < f:P[X > 1/n].

Applying Chebyshev’s inequality,
E
PX >1/n] < ElX] =0.
)

and so P[X > 0] =0. O



5 A Scalar Product on V/ ~

Recall that a scalar product on a real vector space V is a map (-, -): V — R with the properties

u, uy >

—-

ii) (u,u) =0 if and only if u = 0,

(
(
(U, 0) = (v, ),
(
(

v

)
)

iii)
) {u, Aoy = A~ (u,v),
)

v) (u,v+w) = (u,v) + (u,w)

for all u,v,w € V and A € R.
We now claim that

(X,Y) = E[XY] (3)

defines a scalar product on the set V/ ~. We will show this for the case of V' being the set of continuous random
variables only; the discrete case is completely analogous.

i) (X,X):=E[X?] = [;2*fx(x)dz > 0since fx(x) >0 for all z € R.

ii) X = 0 implies E[X?] = E[0] = 0. Conversely, E[X?] = 0 implies X = 0 almost surely (since X? is positive,
X? = 0 almost surely by Lemma 1 and hence X = 0 almost surely). But then X =0 in V/ ~.

iii) E[XY]=E[YX]
iv) E[X(\Y)] =E[AXY] = AE[XY]
v) EX(Y+Z)]=EXY +XZ]|=EXY]+E[XZ].
Since (3) defines a scalar product on a vector space, we know that the Cauchy-Schwartz inequality holds,
E[XY]? < E[X?]-E[Y?]

and, in particular,

E[XY]* = E[X?] - E[Y?] if and only if X=XY  as. for some A € R.
Remark 3. Should we need to recall a proof of the Cauchy-Schwartz inequality, here is one:
Let u, v be arbitrary vectors in a vector space. Write ||u|| := \/(u,u), e := v/||v||. Then (e, e) = (v,v)/|v||* =1
and

0 < |lu— {e,u)e||® = (u— (e, u)e,u — {e,u)e)

= [[ull® = (e, w)[?

It follows that

[u, 0)* = oIl - [{u, e)* < [lull® - [Jv]*.
Suppose that
[, 0)* = Jlull® - flol]*.
This is equivalent to |(e, u)|? = |lu||* or |[u — (e, u)e|| = 0, which in turn means that

(v, w)

u={e,u)e = v.

v, )



6 Variance and Covariance

From the point of view of linear algebra, E[X?] defines the square of the norm of X, i.e., it gives a measure of
the size of X. However, this has little meaning in probability theory. What is of interest, instead, is the size of
the difference between X and its mean p := E[X]. Therefore, we define

Var[X] := E[(X — )’

(which is the square of the norm of the difference between X and the constant random variable X,.) The
standard deviation o is defined to be the positive square root of the variance and is therefor analogous to the
norm of X — . We often use o2 to denote the variance.

Remark 4. In probability theory, taking an analogy to mechanics, one calls E[X] the first moment of X, E[X?]
the second moment and generally E[X*] the kth moment of X. When the mean is subtracted, the corresponding
moment is said to be centered. Trivially, the centered first moment vanishes, E[X — u] = 0. Hence, the variance
is the centered second moment.

It is sometimes useful to note that
Var[X] = E[X?] - E[X].
and that
Var[\ - X] = A? - Var[X], Var[X.] =0 for a constant random variable X..

Given two random variables X and Y, we define the covariance of X and Y through the scalar product
(X —px,Y = py) = E[(X = px)(Y — py)] =: Cov[X,Y].
It is then easy to check that
Var[X + Y] = Var[X] + Var[Y] + 2 Cov[X, Y].
as would be expected from linear algebra. As for the variance, it is not difficult to show that
Cov[X,Y] = E[XY] - E[X]E[Y].
We standardize a random variable by subracting its mean and dividing by the standard deviation, where we
use that
Var[X — p] = Var[X] = ¢?,

i.e., a standardized X is given by
X—p
—

This corresponds to a normalized vector (of unit lenth) in linear algebra. Note that % has mean zero and

unit variance, so
2 2
<X—,u> =Var[X_M]+E[X_'u] =1
o o o

7 Correlation Coefficient

E

In linear algebra, the scalar product is a measure for the angle between vectors. In probability theory, the
corresponding concept is called correlation. Given two random variables X and Y, we define the correlation
coefficient pxy by

X —ux Y—,uy} _ Cov[X,Y]

oXy ‘— Cov |:
0Xx0y

ox gy
From the Cauchy-Schwartz inequality, we see immediately that

IR

X_ .
AT Hx :)\.M a.s. for some \ € R.
ox Oy

oky <E E

and g%, = 1 if and only if

Hence, |oxy| =1 of and only if for some Sy, 51 € R we have
Y =p5X+ 5o

almost surely.
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