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Welcome to ECE4010J !
I Please read the Course Description, which has been uploaded to the

Files section on the Canvas course site.
I My office is Room 441c in in the Longbin Building. Feel free to drop

in during my office hours (announced on Canvas) or just whenever you
find me there.

I You can also make an appointment by email or write to me with any
questions. My email is horst@sjtu.edu.cn

I The Teaching Assistants for this course will provide recitation classes,
office hours, and help with grading.
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Blended Online/Offline Teaching
In this term our course will be taught in a blended model, whose goal is
to create a pleasant experience for you regardless of whether you
I participate in the classroom;
I participate via video link (Zhumu);
I watch a recorded session.

The blackboard will be recorded using a high-resolution webcam; the
slideshow will be recorded via the ”shared screen” function of Zhumu.
Both may be viewed and downloaded as separate video streams.
There will be frequent in-class polls (which are not graded) in which you
are expected to participate.
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Remote Video Client: Zhumu
After Zoom decided to discontinue direct activities in China, it licensed its
software to several local companies. One of these companies is Zhumu.
Please download an “international” Zhumu client here:

https://zhumu.com/download-intl

(Note that this is a different client from the one that is offered by default
on the main page.)
Please create an account using you SJTU email address and make sure
that your alias is visible in roman transliteration (see next slide).
Links for joining our classes by video will be published on Canvas. You are
required to keep these links confidential and to not share them with any
other JI student or anyone else.
Our course will not use Feishu.

https://zoom.com.cn/en-us/oempartners.html
https://zhumu.com/download-intl
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Everyone on Zhumu!
Please join the Zhumu session at the start of every class, whether you are
joining the class on-site or remotely.

Remote On-Site
Zhumu Alias Name in pinyin, e.g.,

“Xu Baishen”
[IC] followed by name in
pinyin, e.g.,
“[IC] Xu Baishen”

Camera On Off
Video On On or Off

Microphone Muted, but ready to un-
mute

Muted, but ready to
unmute

Sound On Off
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Office Hours / Piazza
In addition to being available in office hours, I and the TAs will be
answering course-related questions on Piazza. Please also create an
account such that your name in pinyin is visible.
It is possible to send private messages on Piazza, but most messages
should be public so that everyone can see them and the responses or
respond themselves. Feel free to answer other students’ questions!
Please do not post anonymously unless you have a good reason. Don’t be
shy!
Please post messages in English only.
Here is the sign-up link:

https://piazza.com/sjtu.org/spring2022/ece4010j

https://piazza.com/sjtu.org/spring2022/ece4010j
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Mathematica
JI has obtained an unlimited student license for a computer algebra
software called Mathematica, developed by Wolfram Research.
You will be required to make use of this or a similar software in your
homework assignments and examinations, so you should obtain a copy.
Please see the Course Description for details on the download procedure.
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Course Outcomes
The Course Description defines a set of “Course Outcomes.” These are a
sampling of minimal skills that you should obtain in the process of taking
this course.
The list is of course not exhaustive (you should actually learn much more
than what is given there). Nevertheless, it represents an indication of
whether the course successfully conveyed a selection of concepts.
Whether the outcomes are attained is evaluated in two ways:
I Subjectively: You will be asked your opinion on how well you think

you have mastered each given outcome in the Course Evaluation at
the end of the term.

I Objectively: The course will include a set of online quizzes on Canvas
that you can take in your own time without the pressure found in
exams. Each quiz will evaluate one of the course outcomes. The
quizzes will contribute to the course grade.
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Grade Components

Grade Component Points
Course Outcome Quizzes 7

Completing the Peer Evaluation for the Term Project 1
Completing the Peer Evaluation for the Coursework 1

Completing the Course Evaluation 1
Class Participation 5

Midterm Exam 25
Final Exam 30

Online Modules 15
Term Project 15

Total 100

Please refer to the syllabus (Course Description) for more details regarding
the grade components!
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Grading Policy
The course will be graded on a letter scale, with a certain number of
points corresponding to a letter grade.
The grading scale will usually be based on the top approximately 6-12% of
students receiving a grade of A+, with the following grades determined by
(mostly) fixed point increments.
Apart from this normalization, the grade distribution is up to you! If (for
example) all students obtain many points in the exams, I am happy to see
everyone receive a grade of A. Students are primarily evaluated with
respect to a fixed point scale, not with respect to each other.
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More Info: Syllabus (a.k.a. Course Description)
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Course Topics: Probability Theory
1. Elementary Probability
2. Conditional Probability
3. Discrete Random Variables
4. Expectation, Variance and Moments
5. The Pascal, Negative Binomial and Poisson Distributions
6. Continuous Random Variables
7. The Normal Distribution
8. Multivariate Random Variables
9. The Weak Law of Large Numbers
10. The Hypergeometric Distribution
11. Transformation of Random Variables
12. Reliability
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Course Topics: Statistics
13. Samples and Data
14. Parameter Estimation
15. Interval Estimation
16. The Fisher Test
17. Neyman-Pearson Decision Theory
18. Null Hypothesis Significance Testing
19. Single Sample Tests for the Mean and Variance
20. Non-Parametric Single Sample Tests for the Median
21. Inferences on Proportions
22. Comparison of Two Variances
23. Comparison of Two Means
24. Non-Parametric Comparisons; Paired Tests and Correlation
25. Categorical Data
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Course Topics: Linear Regression

26. Simple Linear Regression I: Basic Model and Inferences

27. Simple Linear Regression II: Predictions and Model Analysis

28. Multiple Linear Regression I: Basic Model

29. Multiple Linear Regression II: Inferences on the Model

30. Multiple Linear Regression III: Finding the Right Model

31. ANOVA I: Basic Model

32. ANOVA II: Homoscedasticity and Post-Tests
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Elements of Probability Theory
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Elements of Probability Theory
1. Elementary Probability
2. Conditional Probability
3. Discrete Random Variables
4. Expectation, Variance and Moments
5. The Pascal, Negative Binomial and Poisson Distributions
6. Continuous Random Variables
7. The Normal Distribution
8. Multivariate Random Variables
9. The Weak Law of Large Numbers
10. The Hypergeometric Distribution
11. Transformation of Random Variables
12. Reliability
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1. Elementary Probability
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Elements of Probability Theory
1. Elementary Probability
2. Conditional Probability
3. Discrete Random Variables
4. Expectation, Variance and Moments
5. The Pascal, Negative Binomial and Poisson Distributions
6. Continuous Random Variables
7. The Normal Distribution
8. Multivariate Random Variables
9. The Weak Law of Large Numbers
10. The Hypergeometric Distribution
11. Transformation of Random Variables
12. Reliability
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Games of chance have a long history...

Cubical Die from Tepe Gawra. Photo of Object 31-52-309 of the Penn Museum. Online: https://www.penn.museum/collections/object/332432. Described in Brown, W. N. “Indian Games of Pachisi,
Chaupar, and Chausar”. Expedition: The Magazine of the University of Pennsylvania Museum of Archaeology and Anthropology. Philadelphia. The University Museum. 1964. Vol. 6. no. 3. Pages
32-35

https://www.penn.museum/collections/object/332432
https://www.penn.museum/collections/object/332432
https://www.penn.museum/collections/object/332432
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... but probability in mathematics does not. Why?
I Platonism: real-life objects are imperfect representations of ideal

“Platonic Forms”. A six-sided die is a representation of an ideal cube.
I But randomness appears tied to real-life processes - no platonic form.
I Randomness was not considered amenable to mathematics.

Detail of the “School of Athens” by Rafael. Wall Fresco in the Vatican, Stanza della Segnatura. 1509. File:Raffael 058.jpg. (2019, September 1). Wikimedia Commons, the free media repository.

https://commons.wikimedia.org/w/index.php?title=File:Raffael_058.jpg&oldid=364094290
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... but probability in mathematics does not. Why?
I Divination: randomness was often used to predict the future.
I Predicting randomness = interfering with the will of the gods.

Runestones. Online: https://www.needpix.com/photo/download/1235148/divination-background-krupnyj-plan-the-consignment-a-few-runes-stones-scrying-stones-bone.

https://www.needpix.com/photo/download/1235148/divination-background-krupnyj-plan-the-consignment-a-few-runes-stones-scrying-stones-bone
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Girolamo Cardano (1501-1576)

Girolamo Cardano (1501-1576). Etching by Carl
Mayer. Dated 1813/1863 Online:
https://picryl.com/media/cardano-girolamo-
1f9a09.

I Invented cardan shaft
I Published solutions to cubic and quartic equations
I First systematic use of negative numbers in

Europe; acknowledged imaginary numbers
I Heavy gambler, known to be short of money
I Published first systematic treatment of probability

1.1. Cardano’s Principle. Let A be a random outcome of an experiment
that may proceed in various ways. Assume each of these ways is equally
likely. Then the probability P [A] of the outcome A is

P [A] =
number of ways leading to outcome A

number of ways the experiment can proceed.

https://picryl.com/media/cardano-girolamo-1f9a09
https://picryl.com/media/cardano-girolamo-1f9a09
https://picryl.com/media/cardano-girolamo-1f9a09
https://picryl.com/media/cardano-girolamo-1f9a09
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Two Die Rolls
It is clear that the probability is a real number between 0 and 1.

1.2. Example. Two six-sided dice are rolled. Both are fair dice and have
equal probability of returning any given number.
What is the probability that the sum of the results is 11 or 12?
There are six possible results for the first die and 6 possible results for the
second die, so there are a total of 6 · 6 = 36 possible outcomes.
The outcomes that give a result of 11 or 12, writing the outcomes as (first
die, second die), are:
I outcome (6; 6) gives the sum 12;
I outcome (5; 6) gives the sum 11;
I outcome (6; 5) gives the sum 11;
I all other outcomes will give a sum of 10 or less.
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Two Die Rolls
The probability that the sum of the results is at least 11 is

number of outcomes leading to a sum of 11 or 12
number of possible outcomes =

3

36
=

1

12
:

When applying Cardano’s principle, it is crucial that all outcomes are
equally likely!
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Two Coin Tosses
1.3. Example. A fair coin is tossed twice and the result of “heads” (h) or
“tails” (t) is recorded each time. What is the probability of obtaining at
least one head?
We use a tree diagram to visualize the possible outcomes:

Heads Tails

Heads, Heads Heads, Tails Tails, TailsTails, Heads

We see that

P [at least 1 Head] = 3

4
:
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D’Alembert’s Error

Portrait de Jean Le Rond d’Alembert. de la
Tour, Maurice Quentin. 1753. Painting. Musee
de Louvre. Paris. File:Alembert.jpg. (2020,
January 29). Wikimedia Commons, the free
media repository.

D’Alembert asserted in 1754 that it is erroneous to
consider the four cases (h; h), (h; t), (t; h), (t; t) since
the experiment can be stopped immediately if heads
comes up on the first toss.
Therefore, he claimed, there are only three outcomes:
I heads;
I tails, then heads;
I tails, then tails;

so the probability of obtaining at least one head should be 2=3, not 3=4.
Of course, the error in his thinking is that not all of the three outcomes
that he cites are equally likely.

Literature: http://www.cs.xu.edu/math/Sources/Dalembert/croix_ou_pile.pdf

http://commons.wikimedia.org/wiki/File:Alembert.jpg
http://commons.wikimedia.org/wiki/File:Alembert.jpg
http://commons.wikimedia.org/wiki/File:Alembert.jpg
http://commons.wikimedia.org/wiki/File:Alembert.jpg
http://commons.wikimedia.org/wiki/File:Alembert.jpg
http://www.cs.xu.edu/math/Sources/Dalembert/croix_ou_pile.pdf
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Bose’s inspiration
If the experiment were modified so that two coins
were tossed at the same time, the result remains the
same.
But if these two coins were indistinguishable, so that
the results (h; t) and (t; h) could not be told apart,
then d’Alembert’s reasoning would be correct.
In the early 1920’s, the Indian physicist Satyendra
Nath Bose was working on the energy distribution of
elementary particles such as photons. Contemporary
theory could not explain the experimental data.

Satyendra Nath Bose (1894-1974) in Paris.
1925. Photography. Siliconeer, August 2000,
Vol. 1,7 File:SatyenBose1925.jpg. (2020,
January 27). Wikimedia Commons, the free
media repository.

In a calculation during a lecture, Bose made a mistake similar to the one
described here. He discovered that, based on the mistake, the calculations
turned out to correctly describe the data. From this he deduced that
photons (and related particles) are indistinguishable – there is in principle
no physical way to tell two photons apart.

https://commons.wikimedia.org/wiki/File:SatyenBose1925.jpg
https://commons.wikimedia.org/wiki/File:SatyenBose1925.jpg
https://commons.wikimedia.org/wiki/File:SatyenBose1925.jpg
https://commons.wikimedia.org/wiki/File:SatyenBose1925.jpg
https://commons.wikimedia.org/wiki/File:SatyenBose1925.jpg
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Basic Principles of Counting
Suppose a set A of n objects is given.

I There are n!
(n−k)! different ways of choosing an ordered tuple of k

objects from A.
Such a choice is called a permutation of kkk objects from A.

I There are n!
k!(n−k)! different ways of choosing an unordered set of k

objects from A.
Such a choice is called a combination of kkk objects from A.

I There are n!
n1!n2!:::nk !

ways of partitioning A into k disjoint subsets
A1; : : : ; Ak whose union is A, where each ai has ni elements.
This is called a permutation of kkk indistinguishable objects from A.
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Binomial Coefficients
We define binomial coefficients by 

¸

0

!
:= 1; for ¸ ∈ R (1.1)

and, for n ∈ N \ {0} and ¸ ∈ R, 
¸

n

!
:=

¸ · (¸− 1) · (¸− 2) · · · (¸− n + 1)

n!
: (1.2)

If ¸ ∈ N, this may be expressed as the perhaps more familiar 
¸

n

!
=

¸!

(¸− n)!n!
:

The definition (1.2) also implies that 
m

n

!
= 0 whenever n > m and m; n ∈ N. (1.3)
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Sample Spaces and Sample Points
We want to translate physical outcomes into mathematical objects, for
example:

7−→ (1; 3)

or

7−→ 173 cm

The mathematical objects are called sample points. They can be
numbers, pairs of numbers or any sort of abstract object.
We need to define a sample space, often denoted S, large enough to
accommodate all sample points.



Elementary Probability Slide 31

Events
The sample space can be larger than seems necessary:

7−→ (1; 3) ∈ N2 = N×N

↑ ↗ ↖
physical outcome sample point sample space

An outcome in the sense of Cardano’s principle is then interpreted as a
subset A of a sample space S and called an event.
Two events A1; A2 are called mutually exclusive if A1 ∩ A2 = ∅.
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Events
1.4. Example. A six-sided die is rolled four times. The sample space can be
taken to be S = N4 and a sample point is a 4-tuple, for example
(1; 2; 5; 2) ∈ N4. This sample point would correspond to first rolling a 1,
then a 2, next a 5, followed by a 2.
Many tuples, such as (7; 20; 2; 3) ∈ S do not correspond to any physical
outcome of the experiment.
An event might be “rolling at least two fours” in which case this would be
a subset A ⊂ S such that each 4-tuple in A has at least two entries equal
to 4. For example, (1; 3; 4; 4) ∈ A but (1; 1; 3; 4) =∈ A.
We can then apply counting principles to subsets of sample spaces in order
to find the probabilities of events by Cardano’s principle.
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Probabilities of Events
1.5. Example. We roll a four-sided die 10 times. What is the probability of
obtaining 5 ones, 3 twos, 1 three and 1 four?
There are 410 = 1048576 possibilities for the 10-tuple of results of the die
rolls, corresponding to that many sample points in S = N10 that
correspond to physical results. The event A consists of all ordered
10-tuples containing 5 ones, 3 twos, 1 three and 1 four. There are

10!

5!3!1!1!
= 5040

possible ways of obtaining 5 ones, 3 twos, 1 three and 1 four, so there are
that many elements in A. The probability is

5040

1048576
≈ 0:00481 ≈ 0:5%:
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An Axiomatic Approach
Clearly, for more complicated situations of random-
ness that go beyond simple counting, a more formal
model of probability is needed. In 1933, the Russian
mathematician Kolmogorv introduced an axiomatic
approach.
Given a sample space S, we first need to determine
the set of permissible events.
If S has a finite number of elements, then we can
simply allow any subset of S to be an event. However,
if S is very large (for example, if S = R) then a more
careful approach is needed.

Andrej N. Kolmogorov (1903-1987).
File:Andrej Nikolajewitsch Kolmogorov.jpg.
(2018, December 28). Wikimedia Commons, the
free media repository.

Not every subset of S may be an allowable event. However, we need to
choose “allowable” subsets in a consistent way.

https://commons.wikimedia.org/wiki/File:Andrej_Nikolajewitsch_Kolmogorov.jpg
https://commons.wikimedia.org/wiki/File:Andrej_Nikolajewitsch_Kolmogorov.jpg
https://commons.wikimedia.org/wiki/File:Andrej_Nikolajewitsch_Kolmogorov.jpg
https://commons.wikimedia.org/wiki/File:Andrej_Nikolajewitsch_Kolmogorov.jpg


Elementary Probability Slide 35

A ff-Field of Subsets
Suppose that a non-empty set S is given. A ff-field F on S is a family of
subsets of S such that

(i) ∅ ∈ F;

(ii) if A ∈ F, then S \ A ∈ F;

(iii) if A1; A2; A3; : : : ∈ F is a finite or countable sequence of subsets,
then the union Sk Ak ∈ F.

In probability, we consider families of events that are ff-fields. This is clearly
reasonable, since the above properties guarantee that if a subset is an
event, then so is the complement and if two subsets are events, then their
union must also be an event. Furthermore, the entire set S is an event.
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A ff-Field of Subsets
This is illustrated by the diagrams below:

A B

S

A⋃B

S

(A⋃B)c

S

A⋂B

S
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Examples of ff-Fields of Events
I If S is finite, one can take F = P(S) (the power set of S) without

problems. This is also the case if S is countable.
I For any set S, the smallest possible ff-field is F = {∅; S}.
I One of the most important ff-fields in practice is the set B(I), the set

of Borel sets on an interval I ⊂ R. This is the smallest ff-family
containing all subintervals of I. (We do not give an explicit definition
here.)

Now that we have a sample space and a set of permissible events, we need
a probability function that assigns in principle to every event the
probability of that event occurring.
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Probability Measures and Spaces
Let S be a sample space and F a ff-field on S. Then a function

P : F→ [0; 1]; A 7→ P [A];

is called a probability measure (or probability function or just
probability) on S if

(i) P [S] = 1,
(ii) For any set of events {Ak} ⊂ F such that Aj ∩ Ak = ∅ for j ̸= k,

P
h[
k

Ak

i
=
X
k

P [Ak ]:

The triple (S;F; P ) is called a probability space.
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Rolling a Die Twice
1.6. Example. Suppose we roll a six-sided die twice. The we can take the
sample space to have 36 elements as follows

S = {(j; k) : j; k = 1; : : : ; 6}
=
˘
(1; 1); (1; 2); : : : ; (6; 5); (6; 6)

¯
:

We take the ff-field to be the power set P(S). Following Cardano’s
approach, we then assign the probability

P [{(i ; j)}] = 1

36
; for i ; j = 1; 2; 3; 4; 5; 6

for each individual sample point. This allows us to define probabilities for
an arbitrary event in P(S).
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Rolling a Die Twice
Let A1 be the event that corresponds to the outcome “the sum of the two
die rolls is at most 3” and A2 correspond to the outcome “the two die rolls
give the same number”. Then

A1 = {(1; 1); (1; 2); (2; 1)}; A2 = {(1; 1); (2; 2); (3; 3); (4; 4); (5; 5); (6; 6)}:

The probability of these events is calculated as

P [A1] = P [{(1; 1)}] + P [{(1; 2)}] + P [{(2; 1)}] = 3

36
;

P [A2] =
6

36
=

1

6
:

The event “the sum of two die rolls is at most three and both rolls are the
same” is given by the set containing those sample points both in A1 and in
A2. We calculate its probability to be

P [A1 ∩ A2] = P [{1; 1}] = 1

36
:
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Almost Sure Occurrence
An event A ∈ F is said to occur almost surely if P [A] = 1.

1.7. Example. Suppose we toss a fair coin repeatedly. If it turns heads up,
we stop, otherwise we continue to toss. The sample space may be taken to
record the tosses as strings of “t” (for tails) and “h” (for heads), i.e.,

S =
˘
h; th; tth; ttth; : : :

¯
∪ {t∞}:

where “t∞” stands for an infinite sequence of tosses yielding tails. This a
countable set and we can simply take F = P(S).
In order to define a probability function, we set

P [{t · · · t| {z }
n times

h}] = 1

2n+1

and P [{t∞}] = 0.
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Almost Sure Occurrence
Then the event “Eventually the coin turns up heads.” is given by taking
the union of all sample points that include h. We calculate

P [A] = P [{h}] + P [{th}] + P [{tth}] + · · ·

=
1

2
+

1

4
+

1

8
+ · · ·

= 1:

We say that “Almost surely, the coin will turn up heads eventually.”
However, it is not in principle inconceivable that we toss the coin forever
and never see heads turn up. However, the probability of this happening is
zero.
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Basic Properties of Probabilities of Events
We end by listing some general properties that follow immediately from the
definition of a probability space (S;F; P ):

P [S] = 1;

P [∅] = 0;

P [S \ A] = 1− P [A];

P [A1 ∪ A2] = P [A1] + P [A2]− P [A1 ∩ A2];

where A;A1; A2 ∈ S are any events.
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2. Conditional Probability
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Elements of Probability Theory
1. Elementary Probability
2. Conditional Probability
3. Discrete Random Variables
4. Expectation, Variance and Moments
5. The Pascal, Negative Binomial and Poisson Distributions
6. Continuous Random Variables
7. The Normal Distribution
8. Multivariate Random Variables
9. The Weak Law of Large Numbers
10. The Hypergeometric Distribution
11. Transformation of Random Variables
12. Reliability
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Conditional Probability
Given two events A;B in a ff-field F on a sample space S we can calculate
the probability that
I “event A occurs”,
I “event A does not occur”,
I “events A and B occur” and
I “event A or event B occurs”.

The axioms do not, however, provide us with a way to calculate the
probability that
I “event B occurs if event A has occurred.”

In other words, given information about whether an event A has occurred,
we would like to (re-)calculate the probability of B occurring.
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Conditional Probability
Let us denote by

P [B | A]
the conditional probability that “B occurs given that A has occurred”.

2.1. Example. recall from the previous Example 1.6 that in rolling two dice
we considered the events

A1 = {(1; 1); (1; 2); (2; 1)};
A2 = {(1; 1); (2; 2); (3; 3); (4; 4); (5; 5); (6; 6)}:

What is then P [A1 | A2]?
If we somehow have the information that the die rolls were equal, we can
then conclude that A1 is only possible if among the six results in A2 the
single result (1; 1) has occurred. We should have

P [A1 | A2] =
1

6
:
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Generalizing the Counting Approach
What we have done is calculate

P [A1 | A2] =
|A1 ∩ A2|
|A2|

where |A| denotes the number of elements of A. We could re-write this as

P [A1 | A2] =
|A1 ∩ A2|=|S|
|A2|=|S|

=
P [A1 ∩ A2]

P [A2]
:

This last expression is independent of the “counting” approach and uses
only known probabilistic quantities, so we now define

P [B | A] := P [A ∩ B]

P [A]

whenever P [A] ̸= 0.
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Independence of Events
If one event does not influence another, then we say that the two events are
independent. Formally, we say that two events A and B are independent if

P [A ∩ B] = P [A]P [B]: (2.1)

Equation (2.1) is equivalent to

P [A | B] = P [A] if P [B] ̸= 0,
P [B | A] = P [B] if P [A] ̸= 0,

which correspond to the intuitive idea that the probability of A is not
affected by B occurring and vice-versa.
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The Birthday Problem
2.2. Example. The birthdays (day and month) of a group of people are
generally assumed to be independent. Disregarding leap years, any person
is assumed to have a 1/365 chance of being born on a given day. (Do you
think that this is a reasonable assumption?) How many people should a
group have so that there is a better than even chance of two people in the
group having the same birthday?
We consider the complementary problem and start with a single person in
the group. If we add a second person, there is a 364/365 chance of them
not sharing a birthday. Adding a third person, for no two people to share a
birthday, this person must have his birthday on one of the other 363 days
of the year, so there is now a

364

365

363

365

chance of no two people in the group sharing a birthday.



Conditional Probability Slide 51

The Birthday Problem
Continuing this argument, in a group of n ≥ 2 people there is a

nY
k=2

366− k

365
=

1

365n−1

364!

(365− n)!

chance of no two people having the same birthday. It turns out that for
n = 23 this number is less than 1/2, so the probability of two people
having the same birthday is > 1=2.
This statement has been verified empirically; in a soccer match there are
2× 11 players + 1 referee on the pitch. On any given playing day in the
Premier Division of the English league, about half the games should
feature two participants with the same birthday.
Literature: Coincidences: The truth is out there, Teaching Statistics, Vol. 1, No. 1,
1998
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Independence vs. Law of Large Numbers

On the one hand, successive flips of a coin are in-
dependent - the result of one coin flip should not
influence the result of the following coin clips.
On the other hand, experience tells us that if we toss
a fair coin many times, it should not come heads up
all the time. On average, we expect about one-half
of the results to be heads.

Jacob Bernoulli (1654-1705). Painting by
Niklaus Bernoulli in 1687. File:Jakob
Bernoulli.jpg. (2016, December 29). Wikimedia
Commons, the free media repository.

This principle was formulated by Jacob Bernoulli in the early 18th century
as the Law of Large Numbers:

Probability ←→ Proportion of outcomes

https://commons.wikimedia.org/w/index.php?title=File:Jakob_Bernoulli.jpg&oldid=227954638
https://commons.wikimedia.org/w/index.php?title=File:Jakob_Bernoulli.jpg&oldid=227954638
https://commons.wikimedia.org/w/index.php?title=File:Jakob_Bernoulli.jpg&oldid=227954638
https://commons.wikimedia.org/w/index.php?title=File:Jakob_Bernoulli.jpg&oldid=227954638
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Heuristic Version of the Law of Large Numbers
2.3. Heuristic Law of Large Numbers. Let A be a random outcome of an
experiment that can be repeated without this outcome influencing
subsequent repetitions. Then the probability P [A] of this event occurring
may be approximated by

P [A] ≈ number of times A occurs
number of times experiment is performed

We will give a more precise statement of the law later.
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Total Probability
Recall that two events A and B are mutually exclusive if A ∩ B = ∅.
Consider a set of n, pairwise mutually exclusive events A1; : : : ; An in a
sample space S with the additional properties that P [Ak ] ̸= 0 for all
k = 1; : : : ; n and A1 ∪ · · · ∪ An = S: Let B ⊂ S be any event. Then

P [B] = P [B ∩ S] = P
ˆ
B ∩ (A1 ∪ · · · ∪ An)

˜
= P

ˆ
(B ∩ A1) ∪ · · · ∪ (B ∩ An)

˜
= P [B ∩ A1] + · · ·+ P [B ∩ An]

= P [B | A1] · P [A1] + · · ·+ P [B | An] · P [An]

The expression

P [B] =
nX

k=1

P [B | Ak ] · P [Ak ]: (2.2)

is called the total probability formula for P [B].
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The Marriage Problem
As an application of the formula for total probability, consider the following
marriage problem:
Suppose you are trying to find the “perfect partner.” There are n partners
available, and they can be ranked from 1 to n with regard to “suitability”,
where the “most suitable” partner has rank 1 and the “least suitable”
partner has rank n. We write xk ∈ {1; : : : ; n} for the rank of the kth
partner.

x1 = ? x2 = ?

…

xn = ?
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The Marriage Problem
You can evaluate each partner, but only detect their relative rank yk :
(“best so far”, “second best so far”, etc.).
2.4. Example.

x1 = 3
y1 = 1

x2 = 6
y2 = 2

x3 = 2
y3 = 1

x4 = 4
y4 = 3

x5 = 1
y5 = 1

x6 = 5
y6 = 5

After evaluation: Accept or discard forever.
Goal: Find most suitable partner with xk = 1.
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Strategy and Outcomes
Optimal strategy: For some r ≥ 1, evaluate and automatically

reject r − 1 potential partners.

Then select the first candidate superior to all the previous ones, if possible.
To summarize:

1. Choose r ≥ 1.
2. Select k with yk = 1 and k ≥ r , if possible. Discard all others.
3. Otherwise, do not choose anyone.

Possible outcomes:
I The most suitable partner (xk = 1) is selected;
I A less suitable partner (xk > 1) is selected;
I No partner is selected.
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Examples
r = 2:

x1 = 3
y1 = 1

x2 = 6
y2 = 2

x3 = 2
y3 = 1

x4 = 4
y4 = 3

x5 = 1
y5 = 1

x6 = 5
y6 = 5

r = 4:

x1 = 3
y1 = 1

x2 = 6
y2 = 2

x3 = 2
y3 = 1

x4 = 4
y4 = 3

x5 = 1
y5 = 1

x6 = 5
y6 = 5
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Finding the Optimal Strategy
The sample space can be taken to be

S = {(k; j) : k is selected and xj = 1; k = 0; : : : ; n; j = 1; : : : ; n}

where k = 0 indicates that no person was selected. We say that we “win”
if we end up by selecting the most suitable partner, i.e., we select k with
xk = 1. We denote this event by

Wr =
˘
(k; k) : k = r; : : : ; n

¯
; r ≥ 1:

Given r ≥ 1, the probability of winning is denoted

pr = P [Wr ]:

Problem: How to choose rrr so that prprpr is maximal?
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The Total Probability Formula
We denote the event that the mth person is the most suitable partner by

Bm =
˘
(k;m) : k = 0; : : : ; n

¯
; m = 1; : : : ; n:

Note that the Bm are mutually exclusive and that their union is S. Then
by the formula for total probability,

pr = P [Wr ] =
nX

m=1

P [Wr | Bm]P [Bm]:

Evaluating the partners in random order,

P [Bm] =
1

n
; m = 1; : : : ; n:
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Probability of Selecting No Partner
No partner will be chosen if and only if the very best candidate was
discarded. The probability of this happening is

P [selecting no partner] = r − 1

n
;

Of course, in that case we can’t win:

P [Wr | Bm] = 0 for m < r

since the most suitable partner will have been discarded.
Therefore, the expression reduces to

pr =
1

n

nX
m=r

P [Wr | Bm]:
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The Marriage Problem
Suppose that xm = 1 for m ≥ r :

x1

…

xr−1 xr

…

xm−1 xm = 1
ym = 1

We will win if there is no relative rank yk = 1 for r ≤ k < m.
Hence, the minimum of the finite sequence (x1; : : : ; xr−1; xr ; : : : ; xm−1)
must occur for one of the subscripts 1 ≤ k ≤ r − 1.
This will happen with probability

P [Wr | Bm] =
r − 1

m − 1
:
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The Marriage Problem
We hence have

pr =
r − 1

n

nX
m=r

1

m − 1

To find the maximum of this expression, we set x = r=n and use the
approximation

nX
k=1

1

k
≈ ln(n)− ‚

where ‚ is the Euler-Mascheroni constant. Then

pr =

„
x − 1

n

«“ nX
m=2

1

m − 1
−

r−1X
m=2

1

m − 1

”
≈
„
x − 1

n

« `
ln(n − 1)− ln(r − 2)

´
≈ −x ln x:
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The Marriage Problem
The maximum is now easily found using calculus, yielding xmax = 1=e. We
hence take r = ⌈n=e⌉, which is about 37% of the partners. Note that pr
has the value 1=e at xmax.
The optimal strategy can be summarized as follows: evaluate and reject
37% of the partners, then choose the first partner that is more suitable
than any of the preceding partners. This strategy will yield the most
suitable partner 37% of the time, lead to no choice (rejection of all
partners)

r − 1

n
≈ r

n
= xmax = 37%

of the time and lead to an inferior choice 26% of the time.
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Bayes’s Theorem
From the formula for total probability we immediately obtain one of the
most important theorems of elementary probability:
2.5. Bayes’s Theorem. Let A1; : : : ; An ⊂ S be a set of pairwise mutually
exclusive events whose union is S and who each have non-zero probability
of occurring. Let B ⊂ S be any event such that P [B] ̸= 0. Then for any
Ak , k = 1; : : : ; n,

P [Ak | B] =
P [B ∩ Ak ]

P [B]
=

P [B | Ak ] · P [Ak ]
nP

j=1
P [B | Aj ] · P [Aj ]

:

The theorem is due to the English mathematician Thomas Bayes (1701?
- 1761). Unfortunately, no clearly authentic image of him survives.



Conditional Probability Slide 66

Bayes’s Theorem
2.6. Example. Suppose that a rare disease occurs at a rate of 0.1%, i.e.,
one out of a thousand people have that disease. Suppose a test for the
disease is developed that is 99% accurate, i.e., if someone has the disease,
the test determines this with 99% accuracy and if someone does not have
the disease, the test is negative 99% of the time.
Suppose a patient is tested positive for the disease. What is the probability
that she actually has the disease?
We know that

P [has disease] = 0:001;

P [test positive | has disease] = 0:99;

P [test negative | does not have disease] = 0:99:

What we need is P [has disease | test positive].
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Bayes’s Theorem
Let us write D for the event “has disease”, ¬D for “does not have
disease”, n for “test negative” and p for “test positive”.
By Bayes’s Theorem,

P [has disease | test positive] = P [D | p] = P [D and p]

P [p]

=
P [p | D] · P [D]

P [p | D] · P [D] + P [p | ¬D] · P [¬D]

=
0:99 · 0:001

0:99 · 0:001 + 0:01 · 0:999
= 0:0902 ≈ 9%:

Hence, for rare diseases, doctors will always perform a second test on
receiving a positive first test. If possible, the second test uses a different
principle, so as to be independent of the first test.
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The Monty Hall Paradox
You are participating in a game show to win 10,000,000 RMB. The game
master [Monty Hall] presents you with three closed doors. Behind one of
the doors is the prize, behind the other two doors there is simply a goat. If
you open the correct door, you will receive the money, if you open one of
the other two doors you will get a goat.
Before opening any of the three doors, you can announce which door you
intend to open. Obviously, at least one of the other two doors does not
hide the money. The game master opens this (empty) door. You are then
given the option of either
I sticking with your choice or
I switching to the other closed door.

What do you do and does it make a difference?
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The Monty Hall Paradox
To many people it seems counter-intuitive, but the best course of action is
to change your choice to the other door. There will be a 2/3 probability
that the prize is behind the remaining door that you have not chosen!
Why is that? By opening the door, the game master has not given you any
information about the door you have chosen (he can always open one of
the remaining doors, no matter which door you choose). The probability of
this being the correct door was 1/3 before he opens the other door, and it
remains that way after he opens the door.
However, his opening a door does give you information on the other two
doors, namely, it tells you which of the other two doors does definitely not
hide the prize. The original 2/3 probability that one of these doors hides
the money is now concentrated on just the one door. Therefore, it is
advantageous for you to change your choice.
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The Monty Hall Paradox
We can use Bayes’s formula to evaluate the probabilities explicitly.
Suppose the doors are denoted A, B and C and denote by the same letter
X the event “prize is behind door X” where X = A;B; C. Suppose that
door A is initially selected and that the host opens door C; we denote the
event “host opens door C” by C∗.
Then, by Bayes’s formula,

P [A | C∗] =
P [C∗ | A] · P [A]

P [C∗ | A] · P [A] + P [C∗ | C] · P [C] + P [C∗ | B] · P [B]

=
1
2 ·

1
3

1
2 ·

1
3 + 0 · 13 + 1 · 13

=
1

3
:

Of course, since P [C | C∗] = 0, this also implies P [B | C∗] = 2=3.
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3. Discrete Random Variables
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Elements of Probability Theory
1. Elementary Probability
2. Conditional Probability
3. Discrete Random Variables
4. Expectation, Variance and Moments
5. The Pascal, Negative Binomial and Poisson Distributions
6. Continuous Random Variables
7. The Normal Distribution
8. Multivariate Random Variables
9. The Weak Law of Large Numbers
10. The Hypergeometric Distribution
11. Transformation of Random Variables
12. Reliability
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Random Variables
Many problems in probability theory revolve around pure numbers rather
than arbitrary elements of a sample space (which can be arbitrary objects,
such as tuples, or other objects). It is therefore useful to introduce
functions that take elements of a sample space and map them into a
subset of the real numbers, i.e.,

X : S → R:

where such a function X is said to be a random variable.
The term “random variable” originates from the idea that X has numerical
values (“variable”) that are derived from the outcome of a random
experiment (“random”).
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Random Variables
3.1. Example. Suppose we flip a coin three times. Then the sample space
may be given by

S =
˘
(t; t; t); (t; t; h); (t; h; t); (t; h; h);

(h; t; t); (h; t; h); (h; h; t); (h; h; h)
¯

with t denoting “tails” and h denoting “heads”.
We might now define X as follows:

X(t; t; t) = 0; X(t; t; h) = 1; X(t; h; t) = 1; X(t; h; h) = 2;

X(h; t; t) = 1; X(h; t; h) = 2; X(h; h; t) = 2; X(h; h; h) = 3:

Clearly, X denotes the number of heads in three coin flips.
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Random Variables
We can now ask what the probability is that X takes on the value 1, which
can be found from the probability of each event in the sample space:

P [X = 1] = P
ˆ
{(t; t; h); (t; h; t); (h; t; t)}

˜
:

The notation used on the left is the standard notation for denoting
probabilities of random variables. For example, we write

P [X = x ] = P [A]

where x ∈ R and A ⊂ S is the event containing all sample points p such
that X(p) = x .
More generally, we may write

P [a ≤ X ≤ b]

to denote the probability that the values of X lie between a and b.
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Random Variables and Probability Density Functions
Hence, the probability that a random variable takes on values in a certain
range is in principle determined from the probability space (S;F; P ).
However, to ensure that this works consistently, a lot of mathematical
theory is required if the range of X is (for example) an arbitrary subset of
R.
Therefore, we will make two assumptions:

1) We distinguish between
I discrete random variables, defined as having a countable range in R
I continuous random variables, defined as having range equal to R

(In principle, a random variable can be of neither of these types, but we
will not discuss such cases here.)

2) We assume that a random variable comes with a probability density
function that allows the calculation of probabilities directly, without
recourse to the probability space.
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Discrete Random Variables
3.2. Definition. Let S be a sample space and ˙ a countable subset of R. A
discrete random variable is a map

X : S → ˙

together with a function
fX : ˙ → R

having the properties that
(i) fX(x) ≥ 0 for all x ∈ ˙ and
(ii) P

x∈˙
fX(x) = 1.

The function fX is called the probability density function or probability
distribution of X.
We often say that a random variable is given by the pair (X; fX).
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Density for Discrete Random Variables
For discrete random variables, we define the density function fX in such a
way that

fX(x) = P [X = x ]:

In the following slides, we will introduce various concepts based on
examples of discrete random variables. We will derive the density function
based on the probabilities of the sample space on which the random
variables are defined.
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Bernoulli Random Variable
Consider an experiment that can result in two possible outcomes, e.g.,
success or failure, heads or tails, even or odd. Suppose that the probability
of success is p, where 0 < p < 1. Such an experiment is said to be a
Bernoulli trial.
3.3. Definition. Let S be a sample space and

X : S → {0; 1} ⊂ R:

Let 0 < p < 1 and define the density function

fX : {0; 1} → R; fX(x) =

(
1− p for x = 0

p for x = 1:

Then X is said to be a Bernoulli random variable or follow a Bernoulli
distribution with parameter p. We indicate this by writing

X ∼ Bernoulli(p)
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Independent and Identical Trials
More generally, we frequently discuss a sequence of n independent and
identical Bernoulli trials. Here,
I independent means that the outcome of one trial does not influence

the outcome of the following trials.
I identical means that each trial has the same probability of success.

3.4. Example.
I If we flip two fair coins, the two trials are independent and identical.
I If we flip a coin that is fair and another coin that is not fair, the trials

are independent but not identical.
I Suppose a box is filled with 10 red balls and 10 black balls. Twice, we

draw a ball out of the box but do not replace it. This is a Bernoulli
trial where drawing a red ball counts as a “success”. The probability
of success on the first draw is the same as on the second draw (prove
this!). Hence the two trials are identical, but they are clearly not
independent. (Since the result of the first draw influences the
probability of success in the second draw.)
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Counting Successes in a Sequence of Trials
Suppose that we perform a sequence of n independent and identical
Bernoulli trials. After recording the results, we define X to be the random
variable giving the number of successes in n trials.
To determine the density function of X, we need to find the probability of
x successes, where x = 0; 1; : : : ; n. Note that a given sequence of results
with x successes occurs with probability

px(1− p)n−x

since the probability of success is p and the trials are independent and
identical. There are

`n
x

´
ways to place x successes in n trials, hence there

are that many sequences with x successes. Since the sequences are
mutually exclusive, their probabilities can be added and we find

P [x successes in n trials] =
 
n

x

!
px(1− p)n−x :
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Binomial Random Variable
3.5. Definition. Let S be a sample space, n ∈ N \ {0}, and

X : S → ˙ = {0; : : : ; n} ⊂ R:

Let 0 < p < 1 and define the density function

fX : ˙ → R; fX(x) =

 
n

x

!
px(1− p)n−x : (3.1)

Then X is said to be a binomial random variable with parameters n and
p. We indicate this by writing

X ∼ B(n; p)

Of course, B(1; p) = Bernoulli(p).
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Binomial Random Variable
It is easy to verify that (3.1) is actually a density function: we check that
fX(x) ≥ 0 for all x ∈ ˙ and, furthermore,

X
x∈˙

fX(x) =
nX

x=0

 
n

x

!
px(1− p)n−x = (p + 1− p)n = 1:

We have used the binomial theorem here and this is where the name of the
distribution comes from.
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Cumulative Distribution Function
In practice, we are also often interested in the cumulative distribution
function of a random variable, defined as follows,

FX : R→ R; FX(x) := P [X ≤ x ]

For a discrete random variable

FX(x) =
X
y≤x

fX(y)

and, in particular, in the case of the binomial distribution,

FX(x) =

⌊x⌋X
y=0

 
n

y

!
py (1− p)n−y (3.2)

where ⌊x⌋ denotes the largest integer not greater than x .
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Cumulative Distribution Function
3.6. Example. Suppose a fair coin is tossed 10 times. Then the probability
of obtaining not more than three heads is

FX(3) =
3X

y=0

 
10

y

!
1

210
=

1 + 10 + 45 + 120

1024
=

11

64

There is no simple way of evaluating the sum (3.2), so the values need to
be looked up. The Mathematica command for a cumulative distribution
function is is CDF, which for the binomial distribution, however, gives only
a representation in terms of a generalized function:

CDF@BinomialDistribution@n, pD, xD

BetaRegularized@1 - p, n - Floor@xD, 1 + Floor@xDD 0 £ x £ n

1 x > n

0 True
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The Geometric Distribution
Let us now look at another example: suppose we perform a sequence of
i.i.d. Bernoulli trials which continues until a success is obtained. We then
define the geometric random variable X to denote the number of trials
needed to obtain the first success.
3.7. Example. A fair coin has probability p = 1=2 of turning heads up when
flipped. The coin is flipped until the first appearance of heads, with the
following result: (t; t; t; h). In this experiment, the geometric random
variable X attains the value X = 4.
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The Geometric Distribution
3.8. Definition. Let S be a sample space and

X : S → ˙ = N \ {0}:

Let 0 < p < 1 and define the density function fX : N \ {0} → R given by

fX(x) = (1− p)x−1p: (3.3)

We say that X is a geometric random variable with parameter p and
write X ∼ Geom(p).

The cumulative distribution function for a geometrically distributed
random variable (X; fX) with parameter p is given by

F (x) = P [X ≤ x ] = 1− q⌊x⌋;

where q = 1− p is the probability of failure and ⌊x⌋ denotes the greatest
integer less than or equal to x .
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Probabilities and the Geometric Distribution
In Mathematica, the probability density function fX is accessed through the
command PDF, followed by the name of the distribution and the variable of
fX :

PDF@GeometricDistribution@pD, xD

¶ H1 - pLx p x ³ 0

0 True

Note that this differs from (3.3): x − 1 is replaced by x . We note: In
Mathematica, the geometric distribution gives the number of failures
before the first success, while our convention is to give the number of
trials needed for the first success. This is a minor difference and can easily
be compensated for, but it illustrates an important point:

When using a computer program, always check that the
definitions in the program are the same as the ones you are using!
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Probabilities and the Geometric Distribution
The concrete value fX(x) can be calculated if a given value of x is inserted:

PDF@GeometricDistribution@pD, 4D

H1 - pL4 p

Probability can be used to find probabilities such as P [a ≤ x ≤ b]:
Probability@1 < x £ 4, x é GeometricDistribution@pDD

H-1 + pL2 p I3 - 3 p + p2M

Note that to express equalities as a condition (and not as an assignment of
values), Mathematica requires the use of two equals signs:

Probability@x � 4, x é GeometricDistribution@pDD

H-1 + pL4 p
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Roulette

Wheel of fortune. Wikimedia Commons.
Wikimedia Foundation. Web. 1 October 2012

Roulette call bets by Darsie. Wikimedia
Commons. Wikimedia Foundation. Web. 1
October 2012

In (European) roulette, a ball is thrown on a spinning
wheel, which has several fields, numbered 1-36 and
colored red, black or green. Eventually, the wheel
stops spinning and the ball lands on one of the fields.
Players can bet money on the outcome before the
wheel is spun, e.g., by betting that the number will be
“black,” “even,” lie in a certain region, or is otherwise
defined.

European roulette.svg. Wikimedia Commons. Wikimedia Foundation. Web. 10 February 2022

http://commons.wikimedia.org/wiki/File:Roulette_-_detail.jpg
http://commons.wikimedia.org/wiki/File:Roulette_-_detail.jpg
http://commons.wikimedia.org/wiki/File:Roulette.jpg
http://commons.wikimedia.org/wiki/File:Roulette.jpg
http://commons.wikimedia.org/wiki/File:Roulette.jpg
https://commons.wikimedia.org/w/index.php?title=File:European_roulette.svg&oldid=606968456
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Probabilities and the Geometric Distribution
3.9. Example. On August 18, 1913, at the casino in Monte Carlo, a
roulette wheel returned black more than 20 times in a row. Find the
probability of such an event!
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4. Expectation, Variance and Moments
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Elements of Probability Theory
1. Elementary Probability
2. Conditional Probability
3. Discrete Random Variables
4. Expectation, Variance and Moments
5. The Pascal, Negative Binomial and Poisson Distributions
6. Continuous Random Variables
7. The Normal Distribution
8. Multivariate Random Variables
9. The Weak Law of Large Numbers
10. The Hypergeometric Distribution
11. Transformation of Random Variables
12. Reliability
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Averages
Consider the rolling of a fair six-sided die. We are interested in the
average value of the result. One approach is the following:
Since each result (numbers 1,2,3,4,5,6) occurs with probability 1/6, we
take the weighted sum:

1

6
· 1 + 1

6
· 2 + 1

6
· 3 + 1

6
· 4 + 1

6
· 5 + 1

6
· 6 = 3:5:

The average result of a die roll is then 3.5, even though this result itself
can never occur.
As we shall see later, there are also other ways of thinking of an average
(such as the median or the modes of a distribution).
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Expectation
4.1. Definition. Let (X; fX) be a discrete random variable. Then the
expected value or expectation of X is

E[X] :=
X
x∈˙

x · fX(x):

provided that the sum (possibly series, if ˙ is infinite) on the right
converges absolutely.
We often write —X or simply — for the expectation.

4.2. Example. We will prove later that the expectation for a geometric
distribution X is

E[X] =
1

p

and for a binomial distribution Y the expectation is
E[Y ] = np:
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Is Roulette fair?

Wheel of fortune. Wikimedia Commons.
Wikimedia Foundation. Web. 1 October 2012

Roulette call bets by Darsie. Wikimedia
Commons. Wikimedia Foundation. Web. 1
October 2012

In roulette, the player may bet an amount x on a
number. If the ball lands on that number, he re-
ceives 36 times his initial bet, 36x ; if the ball lands
on a different number, he loses his bet. There are 37
numbers on the wheel, so the expected winnings are

E[W ] =
1

37
· (−x) + · · ·+ 1

37
· (−x)| {z }

36 times

+
1

37
· (36− 1)x

= − 1

37
x:

A game is said to be fair if the expected winnings are
zero. The addition of the green zero to the Roulette
wheel makes the game into an unfair game for the
player and ensures the casino’s profit.

American Roulette wheels actually have two zeroes (green “0” and “00”)!

http://commons.wikimedia.org/wiki/File:Roulette_-_detail.jpg
http://commons.wikimedia.org/wiki/File:Roulette_-_detail.jpg
http://commons.wikimedia.org/wiki/File:Roulette.jpg
http://commons.wikimedia.org/wiki/File:Roulette.jpg
http://commons.wikimedia.org/wiki/File:Roulette.jpg
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St. Petersburg Paradox
Suppose someone offers you the following game: he will flip a fair coin,
and if heads come up on the first toss, you receive 2 RMB. If the first toss
comes up tails and the second toss comes up heads, he will give you 4
RMB; if only the third toss yields heads, you receive 8 RMB; and so on.
Thus, if the first heads comes up on the nth toss, you will receive 2n RMB.
What is a fair price to pay in order to enter into the game? In other words,
what are the expected winnings? How much would you pay to be allowed
to play the game?
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St. Petersburg Paradox
Calculating the expectation, we see that the probability of the first head
coming up on the nth toss is 1=2n. Then

E[W ] =
1

2
· 2 + 1

4
· 4 + 1

8
· 8 + · · · =∞:

The expected value is infinite! (More precisely, the expectation doesn’t
exist in the sense of Definition 4.1.)
Hence, you should be willing to pay any finite amount (such as 1,000,000
RMB) to participate in the game.
The fact that most people would not pay nearly as much is known as the
St. Petersburg paradox.
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Functions of Random Variables
Given a random variable X, we may consider functions of X. For example,

Y := X2

represents the random variable obtained by squaring the values of X. In
the case of a discrete random variable, it is not difficult to find the density
function fY of Y = ’(X) where ’ : ˙ → R represents a suitable function:

fY (y) = P [Y = y ] = P [’(X) = y ]

In particular, if y =∈ ran’, then P [’(X) = y ] = 0 and hence fY (y) = 0.
Furthermore, since X is discrete,

P [’(X) = y ] =
X
x∈˙

’(x)=y

fX(x):

(Since the outcomes X = x for different values of x are mutually exclusive,
their probabilities can be summed.)
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Expectation of a Function of a Random Variable
If X : S → ˙ is a random variable with density fX , ’ : ˙ → R a function
and Y = ’(X), then

E[Y ] =
X
y∈R

y · fY (y) =
X
y∈R

X
x∈˙

’(x)=y

y · fX(x)

=
X

(x;y)∈˙×R
y=’(x)

y · fX(x) =
X
x∈˙

’(x)fX(x):

We have hence proved the following result:
4.3. Lemma. Let (X; fX) be a discrete random variable and ’ : ˙ → R

some function. Then the expected value of ’ ◦ X is

E[’ ◦ X] =
X
x∈˙

’(x) · fX(x):

provided that the sum (series) on the right converges absolutely.
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Some Properties of the Expectation
By taking ’(x) = c ∈ R (constant) and ’(x) = c · x for some c ∈ R, we
immediately obtain

E[c] = c; E[cX] = c E[X]

for any discrete random variable X.
Given two random variables X and Y their values can be added to yield a
new random variable X + Y . (This sort of function of multiple random
variables will be discussed in more detail in a later section.) For now we
give, without proof, the following result:
4.4. Theorem. Let X and Y be random variables. Then

E[X + Y ] = E[X] + E[Y ]:
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Location
The expectation can be seen as a measure of location of a distribution: it
indicates where the values of a random variable are concentrated.
The graph below shows the values of the probability density function for a
binomial random variable with n = 20 and p = 0:5:

2 4 6 8 10 12 14 16 18 20
x

P(X  x)
µ 10
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Location
For comparison, here is the graph of the values of the probability density
function for a binomial random variable with n = 20 and p = 0:3:

2 4 6 8 10 12 14 16 18 20
x

P(X  x)

µ 6
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Location
Finally, this is the graph of the values of the probability density function for
a geometric random variable with p = 0:2:

2 4 6 8 10 12 14 16 18 20
x

P(X  x)

µ 5
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Dispersion
The dispersion measures how much the values of a random variables
deviate from their mean. The example below shows two geometric random
variables with p = 0:5 and p = 0:2, respectively.

2 4 6 8 10 12 14 16 18 20
x

P(X  x)

µ 5

µ 2
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Variance and Standard Deviation
One possible way to measure the dispersion of a random variable is the
variance, which is the

mean square deviation from the mean.

Given X, the deviation from the mean is X − E[X]. The mean square
deviation is hence

Var[X] := E
ˆ
(X − E[X])2

˜
;

which is defined as long as the right-hand side exists.
The variance is often denoted by ff2

X or just ff2.
The standard deviation is defined as

ffX =
q
Var[X]:
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Some Properties of the Variance
Using the properties of the mean, we can derive the useful formula

Var[X] = E
ˆ
(X − E[X])2

˜
= E

ˆ
X2 − 2 E[X] · X + E[X]2

˜
= E[X2]− E[X]2:

It is then easy to check that for any constant c ∈ R,

Var[c] = 0; Var[cX] = c2 Var[X]

where c by itself is interpreted as a random variable whose values are
constant and cX is interpreted in the obvious way.
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Standardized Random Variables
It is often useful to “standardize” a random variable by subtracting its
mean and dividing by the standard deviation. If X is a given random
variable, the standardized variable is hence

Y =
X − —

ff
:

We find that

E[Y ] = E

»
1

ff
(X − —)

–
=

1

ff
E[X − —]

=
1

ff

`
E[X]− —

´
= 0

A similar calculation shows that Var[Y ] = 1.
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Standardized Bernoulli Variables
4.5. Example. Consider a Bernoulli random variable X which takes on
values 0 and 1 with probability p = 1=2. Then

E[X] =
1

2
· 0 + 1

2
· 1 =

1

2

and

Var[X] = E[(X − 1=2)2] =
1

2
(0− 1=2)2 +

1

2
(1− 1=2)2

=
1

4
:

Then the standardized random variable is

Y =
X − 1=2

1=2
= 2X − 1:

In other words, Y takes on the values 1 and −1, each with probability 1=2.



Expectation, Variance and Moments Slide 110

Ordinary and Central Moments
So far we have encountered the expectation, E[X], and the variance,
Var[X] = E[X2]− E[X]2. The information contained in these two
quantities is basically that of E[X] and E[X2].
More generally, given a random variable X, the quantities

E[Xn]; n ∈ N;

are known as the nth (ordinary) moments of X.
The quantities

E
h“X − —

ff

”ni
; n = 3; 4; 5; : : : ;

are called the nth central moments of X.
(Of course, not all moments may exist for a given random variable!)
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The Moment-Generating Function
4.6. Definition. Let (X; fX) be a random variable and such that the
sequence of moments E[Xn], n ∈ N, exists.
If the power series

mX(t) :=
∞X
k=0

E[Xk ]

k!
tk

has radius of convergence " > 0, the thereby defined function

mX : (−"; ")→ R

is called the moment-generating function for X.
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The Moment-Generating Function
4.7. Theorem. Let " > 0 be given such that E[etX ] exists and has a power
series expansion in t that converges for |t| < ". Then the
moment-generating function exists and

mX(t) = E[etX ] for |t| < ".

Furthermore,

E[Xk ] =
dkmX(t)

dtk

˛̨̨̨
˛
t=0

:

We can hence calculate the moments of X by differentiating the
moment-generating function.
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The Moment-Generating Function
The basic idea behind the theorem is to write

mX(t) =
∞X
n=0

tn

n!
E[Xn] = E

h ∞X
n=0

tnXn

n!

i
= E[etX ]:

The interchange of the infinite series and the expectation is based on
property (iii) of Theorem 4.4; however the fact that the series is infinite
makes a rigorous justification a little difficult and we omit it here.
Differentiating term-by-term,

dkmX(t)

dtk
=

∞X
n=0

dk

dtk
tn

n!
E[Xn] =

∞X
n=k

tn−k

(n − k)!
E[Xn]:

At t = 0, only the first term survives, so dkmX(t)
dtk

˛̨̨
t=0

= E[Xk ]:
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M.G.F. for the Geometric Distribution
It turns out that the moment-generating function is uniquely associated to
a given distribution: two random variables will have the same m.g.f. if and
only if they have the same probability density function.
We now apply the previous discussion to the geometric distribution:
4.8. Proposition. Let (X; fX) be a geometrically distributed random variable
with parameter p. Then the moment-generating function for X is given by

mX : (−∞;− ln q)→ R; mX(t) =
pet

1− qet

where q = 1− p.
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M.G.F. for the Geometric Distribution
Proof.
We have fX(x) = qx−1p for x ∈ N \ {0}. Then

mX(t) = E[etX ] =
∞X
x=1

etxqx−1p =
p

q

∞X
x=1

(qet)x

This is a geometric series which converges for |qet | = qet < 1, i.e., for
t < − ln q. For such t, the limit is given by

mX(t) =
p

q

∞X
x=1

(qet)x =
p

q

“ ∞X
x=0

(qet)x − 1
”
=

p

q

“ 1

1− qet
− 1

”
=

p

q

qet

1− qet
=

pet

1− qet
:
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Expectation and Variance for the Geometric Distribution
4.9. Lemma. Let (X; fX) be a geometrically distributed random variable
with parameter p. Then the expectation value and variance are given by

E[X] =
1

p
and Var[X] =

q

p2

where q = 1− p.

Proof.
We use the moment-generating function to calculate the expectation value:

E[X] =
d

dt

˛̨̨̨
t=0

mX(t) =
d

dt

˛̨̨̨
t=0

p

e−t − q

=
pe−t

(e−t − q)2

˛̨̨̨
˛
t=0

=
p

(1− q)2
=

1

p
:

The proof for the variance is similar and is left to the reader.
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Expectation and Variance for the Binomial Distribution
4.10. Theorem. Let (X; fX) be a binomial random variable with
parameters n and p.

(i) The moment generating function of X is given by

mX : R→ R; mX(t) = (q + pet)n; q = 1− p:

(ii) E[X] = np.
(iii) Var[X] = npq.

The proof of this theorem is left as an exercise.
The Mathematica commands for the expectation and variance are:

Mean@BinomialDistribution@n, pDD

n p

Variance@BinomialDistribution@n, pDD

n H1 - pL p
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5. The Pascal, Negative Binomial and Poisson
Distributions
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Elements of Probability Theory
1. Elementary Probability
2. Conditional Probability
3. Discrete Random Variables
4. Expectation, Variance and Moments
5. The Pascal, Negative Binomial and Poisson Distributions
6. Continuous Random Variables
7. The Normal Distribution
8. Multivariate Random Variables
9. The Weak Law of Large Numbers
10. The Hypergeometric Distribution
11. Transformation of Random Variables
12. Reliability
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Generalizing the Geometric Distribution
Consider a sequence of independent, identical Bernoulli trials with
probability 0 < p < 1 of success.
Question: How many trials are necessary to obtain r > 0 successes, where
r is a fixed parameter?

…

(The situation described by the geometric distribution corresponds to the
case r = 1 here.)
We calculate the probability that x ≥ r trials are needed to obtain r
successes.
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Counting Trials for r Successes
Main idea: If the r th success is obtained in the x th trial, then there must
have been exactly r − 1 successes in the previous x − 1 trials.

P [exactly r − 1 successes in x − 1 trials] =
 
x − 1

r − 1

!
pr−1(1− p)x−r :

Now with probability p the xth trial will be a success, so

P [obtain r th success in the x th trial] =
 
x − 1

r − 1

!
pr (1− p)x−r :
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The Pascal Distribution

5.1. Definition. Let r ∈ N \ {0}. A random variable
(X; fX) with

X : S → ˙ = N \ {0; 1; : : : ; r − 1}
= {r; r + 1; r + 2; : : :}

and distribution function fX : ˙ → R given by Blaise Pascal (1623-1672). Anonym. ca. 1690.
Painting. Palais de Versailles. Paris. File:Blaise
Pascal Versailles.JPG. (2020, February 12).
Wikimedia Commons, the free media repository.

fX(x) =

 
x − 1

r − 1

!
pr (1− p)x−r ; 0 < p < 1;

is said to follow a Pascal distribution with parameters p and r .

https://commons.wikimedia.org/wiki/File:Blaise_Pascal_Versailles.JPG
https://commons.wikimedia.org/wiki/File:Blaise_Pascal_Versailles.JPG
https://commons.wikimedia.org/wiki/File:Blaise_Pascal_Versailles.JPG
https://commons.wikimedia.org/wiki/File:Blaise_Pascal_Versailles.JPG
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The Negative Binomial Distribution
Instead of counting the number of trials needed to obtain r successes, we
may count the number of failures obtained before r successes:
5.2. Definition. Let r ∈ N \ {0}. A random variable (X; fX) with

X : S → ˙ = N

and distribution function fX : ˙ → R given by

fX(x) =

 
x + r − 1

r − 1

!
pr (1− p)x ; 0 < p < 1;

is said to follow a negative binomial distributionwith parameters p and
r .
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The Negative Binomial Distribution
The term “negative binomial” comes from the fact that 

−r
x

!
=

(−r) · (−r − 1) · · · (−r − x + 1)

x!

=
r · (r + 1) · · · (r + x − 1)

x!
(−1)x

= (−1)x (r + x − 1)!

x!(r − 1)!
= (−1)x

 
r − 1 + x

r − 1

!

so that the density of the negative binomial distribution may be expressed
as

fX(x) =

 
−r
x

!
(−1)xpr (1− p)x

We now return to the Pascal distribution.
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The M.G.F. for the Pascal Distribution
5.3. Theorem. Let (X; fX) be a Pascal random variable with parameters p
and r .

(i) The moment generating function of X is given by

mX : (−∞;− ln q)→ R; mX(t) =
(pet)r

(1− qet)r
; q = 1− p:

(ii) E[X] = r=p.
(iii) Var[X] = rq=p2.

Using Mathematica:
MomentGeneratingFunction@PascalDistribution@r, pD, tD

ãt p

1 - ãt H1 - pL

r
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The M.G.F. for the Pascal Distribution
Proof.
We derive the moment-generating function only. It is given by

mX(t) = E[eXt ] =
∞X
x=r

etx
 
x − 1

r − 1

!
pr (1− p)x−r

=
∞X
x=0

et(r+x)

 
r + x − 1

r − 1

!
pr (1− p)x

= pretr
∞X
x=0

 
−r
x

!
[−et(1− p)]x

Recall the binomial series

(1− y)−r =
∞X
x=0

 
−r
x

!
(−y)x for |y | < 1.
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The M.G.F. for the Pascal Distribution
Proof (continued).
It follows that, as long as et(1− p) < 1,

mX(t) = pretr
∞X
x=0

 
−r
x

!
[−et(1− p)]x

= pretr (1− (1− p)et)−r =
(pet)r

(1− qet)r

with q = 1− p.

5.4. Remark. A random variable following the Pascal distribution with
parameters r and p is the sum of r independent geometric random
variables with parameter p.
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Counting Successes in a Continuous Environment
Binomial distribution: counts successes in n trials.
Now: count successes in a continuous interval [a; b] ⊂ R.
Examples:
I number of earthquakes in a century;
I number of child births in a day;
I number of bacteria in a unit volume of water.

We will talk about arrivals in a time interval [0; t] for some t > 0. The
number of arrivals will be denoted by Xt .
Assumptions:

(i) Independence: If the intervals T1; T2 ⊂ [0; t] do not overlap (except
perhaps at one point), then the numbers of arrivals in these intervals
are independent of each other.

(ii) Constant rate of arrivals.
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Rate of Arrivals (Heuristic Postulates)
Assumption: There exists a number – > 0 (arrival rate) such that for any
small time interval of size ∆t the following postulates are satisfied:

(i) The probability that exactly one arrival will occur in an interval of
width ∆t is approximately – ·∆t.

(ii) The probability that exactly zero arrivals will occur in the interval is
approximately 1− – ·∆t.

(iii) The probability that two or more arrivals ocur in the interval is
approximately zero (very small).

Wanted: a more precise (mathematical) expression of these principles.
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Rate of Arrivals (Heuristic Postulates)
5.5. Example. If a hospital ward experiences, on average, about 12 child
births per day, spread completely randomly throughout 24 hours, then in
any given 10-minute period

(i) The probability that exactly one child birth will occur is approximately

– ·∆t =
12

24 hours ·
1

6
hours = 1

12
:

(ii) The probability that exactly zero births will occur is approximately

1− – ·∆t =
11

12

(iii) The probability that two or more births occur is approximately zero
(very small).
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“Little-o” Notation
We denote by o(t) any function f such that

lim
t→0

f (t)

t
= 0:

Hence o(t) does not denote a particular function, rather a class of
functions. For example,
I t2 = o(t),
I (1 + t)2 = 1 + 2t + o(t),
I sin t = t + o(t).

In particular,
I o(t) + o(t) = o(t),
I tn · o(t) = o(t) for all n ∈ N,
I o(t) · o(t) = o(t).
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Rate of Arrivals (Precise Postulates)
(i) The probability that exactly one arrival will occur in an interval of

width ∆t is
– ·∆t + o(∆t):

(ii) The probability that exactly zero arrivals will occur in the interval is

1− – ·∆t + o(∆t):

(iii) The probability that two or more arrivals occur in the interval is

o(∆t):

We denote by Xt the number of arrivals in the interval [0; t] and write

P [Xt = x ] =: px(t) with x = 0; 1; 2; 3; : : :
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Probability of Zero Arrivals
Consider the time interval

[0; t +∆t] = [0; t] ∪ [t; t +∆t]

Due to independence of non-overlapping time intervals,

p0(t +∆t) = P [0 arrivals in [0; t +∆t]]

= P
ˆ
0 arrivals in [0; t]

˜
· P
ˆ
0 arrivals in [t; t +∆t]

˜
= p0(t) ·

`
1− –∆t + o(∆t)

´
It follows that

−–p0(t) =
p0(t +∆t)− p0(t)

∆t
+

o(∆t)

∆t
:
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Probability of Zero Arrivals
We can take the limit as ∆t → 0 on both sides. Then we have

−–p0(t) = lim
∆t→0

p0(t +∆t)− p0(t)

∆t
= p′0(t):

This is a linear, homogeneous ordinary differential equation for p0.
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Probability of Several Arrivals
Now let x > 0. Then

px(t +∆t) = P [x arrivals in [0; t +∆t]]

=
xX

y=0

P [x − y arrivals in [0; t]] · P [y arrivals in [t; t +∆t]]

= px(t) ·
`
1− –∆t + o(∆t)

´
+ px−1(t) ·

`
–∆t + o(∆t)

´
+ px−2(t) · o(∆t) + · · ·+ p0(t) · o(∆t)

= –∆t px−1(t) + (1− –∆t)px(t) + o(∆t)

so that

–px−1(t)− –px(t) =
px(t +∆t)− px(t)

∆t
+

o(∆t)

∆t
:



The Pascal, Negative Binomial and Poisson Distributions Slide 136

Probability of Several Arrivals
Taking the limit as ∆t → 0, we obtain

p′x(t) = –px−1(t)− –px(t):

Together with
p′0 = −–p0

and suitable initial conditions we have a system of differential equations
that can be solved inductively to determine p0, p1, p2,….
The solution to these equations is

px(t) =
(–t)x

x!
e−–t :

We often define k := –t (“rate times interval”).
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The Poisson Distribution

Siméon Poisson (1781-1840). Delpech, François Séraphim
before 1840. Lithograph. File:Simeon Poisson.jpg. (2019,
August 13). Wikimedia Commons, the free media repository.

5.6. Definition. Let k ∈ R. A random variable
(X; fX) with

X : S → N

and density function fX : N→ R given by

fX(x) =
kxe−k

x!

is said to follow a Poisson distribution with
parameter k.

The Poisson distribution describes the occurrence of events that occur at a
constant rate in a continuous environment.

http://commons.wikimedia.org/wiki/File:Simeon_Poisson.jpg
http://commons.wikimedia.org/wiki/File:Simeon_Poisson.jpg
http://commons.wikimedia.org/wiki/File:Simeon_Poisson.jpg


The Pascal, Negative Binomial and Poisson Distributions Slide 138

M.G.F. and C.D.F. of the Poisson Distribution
5.7. Theorem. Let (X; fX) be a Poisson distributed random variable with
parameter k.

(i) The moment generating function of X is given by

mX : R→ R; mX(t) = ek(e
t−1):

(ii) E[X] = k.
(iii) Var[X] = k.

The cumulative distribution function is

F (x) = P [X ≤ x ] =

⌊x⌋X
y=0

e−kky

y !
:
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The Poisson Distribution
5.8. Example. A healthy individual may have an average white blood cell
count of as low as 4500=mm3 of blood. To detect a white-cell deficiency, a
0:001mm3 drop of blood is taken and the number X of white blood cells is
found.
If at most one is found, is there evidence of a white-cell deficiency?
Here the volume of blood (in mm3) takes the role of the continuous
variable and each observed white cell counts as an “arrival.”
The number of arrivals per unit volume is – = 4500, the volume under
consideration is s = 0:001. Hence we have a Poisson-distributed random
variable with parameter

k = –s = 4:5:

The expected value is E[X] = k = 4:5. Furthermore,

P [X ≤ 1] =
1X

x=0

e−4:54:5x

x!
= 0:061:
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Approximating the Binomial Distribution
Suppose a binomial random variable is given with large n. Then we can
approximate the density function using that of a Poisson distribution:

Within many trials (represented by each disk) the successes (orange disks)
occur as within a continuum of trials.
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Approximating the Binomial Distribution
Mathematically, this is actually a limit statement: If n→∞ while
n · p =: – remains constant, 

n

m

!
pm(1− p)n−m n→∞−−−−→

n·p=k

km

m!
e−k

Therefore, we can approximate the binomial distribution by a Poisson
distribution with parameter

k = pn

if n is large.
In general, one does this if p < 0:1. The smaller p and the larger n are, the
better the approximation.
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Approximating the Binomial Distribution
5.9. Example. A typical aircraft wing has 40, 000 rivets.
Suppose that the probability of a given rivet being defec-
tive is 0.001. What is the probability that not more than
fifty rivets are defective?
The actual probability is

P [X ≤ 50] =
50X
x=0

 
40 000

x

!
(0:001)x(0:999)40 000−x

= 0:94746:

Using the Poisson approximation, k = 40 000 · 0:001 = 40 and

P [X ≤ 50] ≈
50X
x=0

e−40 40
x

x!
= 0:94737:
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6. Continuous Random Variables



Continuous Random Variables Slide 144
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Continuous Random Variables
6.1. Definition. Let S be a sample space. A continuous random variable
is a map X : S → R together with a function fX : R→ R with the
properties that

(i) fX(x) ≥ 0 for all x ∈ R and

(ii)
∞R

−∞
fX(x) dx = 1.

The integral of fX is interpreted as the probability that X assumes values x
in a given range, i.e.,

P [a ≤ X ≤ b] =

Z b

a
fX(x) dx

The function fX is called the probability density function (or just
density) of the random variable X.
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The Probability Density Function
Notice that by the above definition,

P [X = x ] =

Z x

x
fX(y) dy = 0;

i.e., the probability that X assumes any specific value is zero. We see that
fX no longer represents a probability, but is truly a density.
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Cumulative Distribution
6.2. Definition. Let (X; fX) be a continuous random variable. The
cumulative distribution function for X is defined by FX : R→ R,

FX(x) := P [X ≤ x ] =

Z x

−∞
fX(y) dy

Notice that by the fundamental theorem of calculus we can easily obtain
the density fX from FX :

fX(x) = F ′
X(x):
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Expectation and Variance
We can define the expectation of a continuous random variable X
analogously to that of discrete variables:

E[X] :=

Z
R

x · fX(x) dx

It is the possible to prove (using some technical arguments in measure
theory) that for any “reasonable” function ’ : R→ R we have

E[’ ◦ X] =

Z ∞

−∞
’(x) · fX(x) dx;

similarly to the discrete case. As before,

Var[X] = E[(X − E[X])2] = E[X2]− E[X]2

and all the previously established properties of the expectation and
variance continue to hold in the continuous case.
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The Exponential Distribution

6.3. Definition. Let ˛ ∈ R, ˛ > 0.
A continuous random variable (X; f˛)
with density

f˛(x) =

(
˛e−˛x ; x > 0;

0; x ≤ 0;

is said to follow an exponential dis-
tribution with parameter ˛. x

fβ(x)

It is easy to verify that f˛(x) ≥ 0 for all x ∈ R andZ ∞

−∞
f˛(x) dx = 1:
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Expectation and Variance
Through integration by parts, we find the expectation and variance:

E[X] =

Z ∞

−∞
x f˛(x) dx =

Z ∞

0
˛xe−˛x dx

= −xe−˛x
˛̨∞
0

+

Z ∞

0
e−˛x dx =

1

˛
:

The second moment is

E[X2] =

Z ∞

−∞
x2 f˛(x) dx =

Z ∞

0
˛x2e−˛x dx

= −x2e−˛x
˛̨∞
0

+ 2

Z ∞

0
x e−˛x dx =

2

˛2

and therefore,
Var[X] = E[X2]− E[X]2 =

1

˛2
:
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The Moment-Generating Function
We now see that

mX(t) = E[etX ] =

Z ∞

−∞
etx fX(x) dx

so the moment-generating function of a continuous random variable is (up
to a sign) the bilateral Laplace transform of its density.
For the exponential distribution we have

mX(t) = E[etX ] =

Z ∞

−∞
etx f˛(x) dx

=

Z ∞

0
˛e−(˛−t)x dx

=
˛

(˛ − t)

Z ∞

0
e−y dy

= (1− t=˛)−1:
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Connection to the Poisson Distribution
The exponential distribution has a close relationship with the Poisson
distribution.
Recall that for Poisson-distributed events (arrivals) the probability of x
arrivals in the time interval [0; t] is given by

px(t) =
(–t)x

x!
e−–t ; x ∈ N:

Then p0(t) is the probability of no arrivals in [0; t]. This can also be
interpreted as the probability that the first arrival occurs at a time greater
than t.
Denote by T the time of the first arrival (it is a continuous random
variable). Then

P [T > t] = p0(t) = e−–t ; t ≥ 0:

and P [T > t] = 1 for t < 0.
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Connection to the Poisson Distribution
Hence, if we denote by FT the cumulative distribution of the density of T ,
we have

FT (t) = P [T ≤ t] = 1− e−–t ; t ≥ 0;

and FT (t) = 0 for t < 0. Since fT (t) = F ′
T (t), the density is

fT (t) = –e−–t ; t ≥ 0:

and fT (t) = 0 for t < 0.
Thus the time between successive arrivals of a Poisson-distributed random
variable is exponentially distributed with parameter ˛ = –.
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Connection to the Poisson Distribution
6.4. Example. An electronic component is known to have a useful life
represented by an exponential density with failure rate of – = 10−5 failures
per hour, i.e., ˛ = 10−5. The mean time to failure, E[X], is thus
1=˛ = 105 hours.
Suppose we wanted to determine the fraction of such components that
would fail before the mean or expected life:

P [T ≤ 1=˛] =

Z 1=˛

0
˛e−˛x dx = 1− e−1 = 0:63212:

That is, 63.2% of the components will fail before the mean life time.
Observe that this result does not depend on the value of ˛.
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Location of Continuous Distributions
This is a good opportunity to discuss the location of a random variable
(X; fX). The location is supposed to give the “center” of the distribution.
There are three main ways of doing this:

(i) The median MX , defined by P [X ≤ MX ] = 0:5. In the context of
Example 6.4, this is the time where half of the components will have
failed.

(ii) The mean E[X].
(iii) The mode x0, which is the location of the maximum of fX (if there is

a unique maximum location). In the context of Example 6.4, the
mode gives the time with the greatest failure density, i.e., the time
around which failure is most likely. For the exponential distribution,
x0 = 0.

Depending on the application, any of these three measures may be referred
to as the location of a distribution.
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Memoryless Property of the Exponential Distribution
The exponential distribution has an interesting and unique property: it is
memoryless. In other words,

P [X > x + s | X > x ] = P [X > s]:

To see this, note that

P [X > x ] =

Z ∞

x
f (t) dt =

Z ∞

x
–e−–t dt = e−–x :

Then

P [X > x + s | X > x ] =
P [(X > x + s) ∩ (X > x)]

P [X > x ]
=

P [X > x + s]

P [X > x ]

=
e−–(x+s)

e−–x
= e−–s = P [X > s]:
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Time to Several Arrivals
The exponential distribution describes the time to the first (or next) arrival
in a Poisson process.
Generalization: the time Tr needed for r ∈ N \ {0} arrivals to occur.
The cumulative distribution function is given by

FTr (t) = P [Tr < t]

= 1− P [Tr > t]

= 1− P [strictly less than r arrivals before t]

= 1−
r−1X
n=0

(–t)n

n!
e−–t

for t > 0 and FTr (t) = 0 for t < 0.
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Time to Several Arrivals
As before, we find, for t ≥ 0,

fTr (t) = F ′
Tr
(t)

= –e−–t
r−1X
n=0

(–t)n

n!
− –e−–t

r−1X
n=1

(–t)n−1

(n − 1)!

= –e−–t (–t)
r−1

(r − 1)!

=
–r

(r − 1)!
tr−1e−–t

and fTr (t) = 0 for t < 0.
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The Gamma Distribution
6.5. Definition. Let ¸; ˛ ∈ R, ¸; ˛ > 0. A continuous random variable
(X; f¸;˛) with density

f¸;˛(x) =

8<:
˛¸

` (¸)x
¸−1e−˛x ; x > 0;

0; x ≤ 0;

is said to follow a gamma distribution with parameters ¸ and ˛. Here

` (¸) =

Z ∞

0
z¸−1e−z dz; ¸ > 0;

is the Euler gamma function.
Hence, the time needed for the next r arrivals in a Poisson process with
rate – is determined by a Gamma distribution with parameters

¸ = r and ˛ = –:
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Gamma Distribution
The gamma function satisfies ` (1) = 1 and ` (¸) = (¸− 1)` (¸− 1) if
¸ > 1. In other words,

n! = ` (n + 1) for n ∈ N.
Hence it is a continuous extension of the factorial function to the positive
real numbers. Below is its graph for ¸ ∈ (0; 5).

1 2 3 4
x

1
2

6

Γ(x)
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Mean, Variance, Moment-Generating Function
6.6. Theorem. Let (X; f¸;˛) be a Gamma distributed random variable with
parameters ¸; ˛ > 0.

(i) The moment-generating function of X is given by

mX : (−∞; ˛)→ R; mX(t) = (1− t=˛)−¸:

(ii) E[X] = ¸=˛.

(iii) Var[X] = ¸=˛2.
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Mean, Variance, Moment-Generating Function
Proof.
We will verify the moment-generating function only.

mX(t) = E[etX ] =

Z ∞

0
etx

˛¸

` (¸)
x¸−1e−˛x dx

=
˛¸

` (¸)

Z ∞

0
x¸−1e−x(˛−t) dx

Substituting y = x(˛ − t), we have dy = (˛ − t)dx and

mX(t) =
˛¸

` (¸)
(˛ − t)−1

Z ∞

0
[y=(˛ − t)]¸−1e−y dy

=
(˛ − t)−¸˛¸

` (¸)

Z ∞

0
y¸−1e−y dy

= (1− t=˛)−¸:
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The Chi-Squared Distribution
The Gamma distribution is popular for modeling applications, since its
parameters allow it to be fitted to many situations.
An important example is the chi-squared distribution.

6.7. Definition. Let ‚ ∈ N. A continuous random variable (ffl2
‚ ; fX) with

density

f‚(x) =

8<:
1

` (‚=2)2¸ x
‚=2−1e−x=2; x > 0;

0; x ≤ 0;

is said to follow a chi-squared distribution with ‚ degrees of freedom.

The chi-squared distribution is simply a gamma distribution with ˛ = 1=2
and ¸ = ‚=2. It is worth noting that

E[ffl2
‚ ] = ‚; Var[ffl2

‚ ] = 2‚:

This distribution plays an important role in statistics.
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Density of a Gamma Distribution with ¸ = ˛ = 2

x

f2,2(x)
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7. The Normal Distribution
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Ceres

Portrait of Giuseppe Piazzi (1746-1826).
Bordiga, F. 1808. Smithsonian institute Library.
File:Giuseppe Piazzi.jpg. (2013, November 2).
Wikimedia Commons, the free media repository.

On January 1st, 1801, the comet Ceres (later: planet,
asteroid, dwarf planet) was discovered by the Italian
priest Giuseppe Piazzi. He observed it 24 times un-
til February 11th. When his observations were finally
published in September 1801, Ceres could not be ob-
served any more due to the sun’s glare. So Piazzi’s
discovery could not be confirmed.
To find Ceres once it would become visible again at
the end of the year, its position would need to be
calculated.

But Piazzi had observed only around 1% of Ceres’s orbit.

Orbit of Ceres File:Ceres Orbit.svg. (2016, January 12). Wikimedia Commons, the free media repository.

https://commons.wikimedia.org/w/index.php?title=File:Giuseppe_Piazzi.jpg&oldid=108636054
https://commons.wikimedia.org/w/index.php?title=File:Giuseppe_Piazzi.jpg&oldid=108636054
https://commons.wikimedia.org/w/index.php?title=File:Giuseppe_Piazzi.jpg&oldid=108636054
https://commons.wikimedia.org/w/index.php?title=File:Giuseppe_Piazzi.jpg&oldid=108636054
https://commons.wikimedia.org/w/index.php?title=File:Ceres_Orbit.svg&oldid=184499633
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Carl Friedrich Gauß
The young mathematician Carl Friedrich Gauß heard
about the Ceres problem and set to work. Within
three months, he derived a prediction for the expected
position of Ceres and published it in early December
1801. On December 31st, Ceres was found very close
to the predicted position. This achievement of the
24-year-old Gauß established his reputation.
Gauß developed several new mathematical tools (such
as the least-squares method).

C. F. Gauß at 50 (1777-1855). Bendixson, S.
D. 1828. Lithograph. Smithsonian institute
Library. File:Bendixen - Carl Friedrich Gau,
1828.jpg. (2020, March 5). Wikimedia
Commons, the free media repository.

But the most important idea was that a prediction would be impossible
without understanding the mathematical function which described the
errors and uncertainties in the Piazzi’s observations. Starting from the
premise that such a function exists in the first place, he derived the
distribution which became known as the Gaußian or normal distribution.

https://commons.wikimedia.org/w/index.php?title=File:Bendixen_-_Carl_Friedrich_Gau%C3%9F,_1828.jpg&oldid=401596064
https://commons.wikimedia.org/w/index.php?title=File:Bendixen_-_Carl_Friedrich_Gau%C3%9F,_1828.jpg&oldid=401596064
https://commons.wikimedia.org/w/index.php?title=File:Bendixen_-_Carl_Friedrich_Gau%C3%9F,_1828.jpg&oldid=401596064
https://commons.wikimedia.org/w/index.php?title=File:Bendixen_-_Carl_Friedrich_Gau%C3%9F,_1828.jpg&oldid=401596064
https://commons.wikimedia.org/w/index.php?title=File:Bendixen_-_Carl_Friedrich_Gau%C3%9F,_1828.jpg&oldid=401596064
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Normal (Gauß) Distribution
7.1. Definition. Let — ∈ R, ff > 0. A continuous random variable (X; fX)
with density

fX(x) =
1√
2ıff

e−((x−—)=ff)2=2

is said to follow a normal distribution with parameters — and ff.

μμ -σ μ +σ
x

y

y 
1

2 πσ2
ⅇ
-
1
2 

x-μ
σ

2
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Normal Distribution
It is easily verified that

R
R
fX(x) dx = 1 by using polar coordinates.

We write
X ∼ N(—; ff)

whenever a random variable X follows a normal distribution with mean —
and variance ff2.
7.2. Theorem. Let (X; fX) be a normally distributed random variable with
parameters — and ff.

(i) The moment-generating function of X is given by

mX : R→ R; mX(t) = e—t+ff2t2=2:

(ii) E[X] = —.

(iii) Var[X] = ff2.
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Normal Distribution
Proof.
We will verify the moment-generating function only.

mX(t) = E[etX ] =

Z ∞

−∞

etx√
2ıff

e−((x−—)=ff)2=2 dx

=
1√
2ıff

Z ∞

−∞
etx−((x−—)=ff)2=2 dx

We complete the square in the exponent to gain

tx − (x − —)2

2ff2
= −(x − (—+ ff2t))2

2ff2
+ —t + ff2t2=2
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Normal Distribution
Proof (continued).
Substituting into the integral,

mX(t) =
1√
2ıff

Z ∞

−∞
e−

(x−(—+ff2t))2

2ff2
+—t+ff2t2=2 dx

= e—t+ff2t2=2 1√
2ıff

Z ∞

−∞
e−

(x−(—+ff2t))2

2ff2 dx| {z }
=1
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Standard Normal Distribution
7.3. Definition. A normally distributed random variable with parameters
— = 0 and ff = 1 is called a standard normal random variable and
denoted by Z.
The standard normal distribution is particularly important because any
normally distributed random variable can be transformed into a
standard-normally distributed one.
7.4. Theorem. Let X be a normally distributed random variable with mean
— and standard deviation ff. Then

Z :=
X − —

ff

has standard normal distribution.
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Transformation of Random Variables
It is easily seen that Z = X−—

ff has mean E[Z] = 0 and variance VarZ = 1,
but it is not clear that Z is normally distributed. To see this, we need to
find the density of Z.
Hence it is worth studying the density of transformed variables in general.
7.5. Theorem. Let X be a continuous random variable with density fX .
Let Y = ’ ◦ X, where ’ : R→ R is strictly monotonic and differentiable.
The density for Y is then given by

fY (y) = fX(’
−1(y)) ·

˛̨̨̨
˛d’−1(y)

dy

˛̨̨̨
˛ for y ∈ ran’

and

fY (y) = 0 for y =∈ ran’.
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Transformation of Random Variables
Proof.
We assume without loss of generality that ’ is strictly decreasing. (The
case where ’ is strictly increasing is analogous.)
The cumulative distribution function for Y is given by

FY (y) = P [Y ≤ y ] = P [’(X) ≤ y ]:

Since ’ is strictly decreasing, ’−1 exists and is also decreasing. Suppose
that y ∈ ran’. Then

FY (y) = P [’(X) ≤ y ]

= P [’−1(’(X)) ≥ ’−1(y)]

= P [X ≥ ’−1(y)]

= 1− P [X ≤ ’−1(y)]

= 1− FX(’
−1(y)):
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Transformation of Random Variables
Proof (continued).
Since ’ is continuous, the range of ’ is an interval in R. If y ̸∈ ran’, then
either y > z for all z ∈ ran’ or y < z for all z ∈ ran’.
We then see that

FY (y) = P [Y ≤ y ] = P [’(X) ≤ y ] =

(
0 if y < z for all z ∈ ran’

1 if y > z for all z ∈ ran’

To obtain the density fY , we differentiate FY . For y ∈ ran’ we have

fY (y) = F ′
Y (y) = −fX(’−1(y))

d’−1(y)

dy

= fX(’
−1(y)) ·

˛̨̨̨
˛d’−1(y)

dy

˛̨̨̨
˛ :

If y =∈ ran’, FY is constant and hence fY = F ′
Y = 0.
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Standard Normal Distribution
We can now prove Theorem 7.4. We have Z = ’ ◦ X, where ’(x) = x−—

ff
is strictly increasing and differentiable with ran’ = R. Note that

’−1(z) = ffz + —;
d’−1(z)

dz
= ff > 0:

Using
fX(x) =

1√
2ıff

e−((x−—)=ff)2=2

we have

fZ(z) = fX(’
−1(z)) ·

˛̨̨̨
˛d’−1(z)

dz

˛̨̨̨
˛ = 1√

2ıff
e−(z)2=2 · ff =

1√
2ı

e−z2=2;

which is the density of the standard normal distribution. Hence the variable
Z = X−—

ff is standard normal.
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Transforming Variables
We can verify Theorem 7.4 with Mathematica:

TransformedDistributionB
X - Μ

Σ

, X é NormalDistribution@Μ, ΣDF

NormalDistribution@0, 1D

Question. If X is standard normal, what is the density of X2?

PDFATransformedDistributionAX2, X é NormalDistribution@0, 1DE, xE

ã-x�2

2 Π x
x > 0

0 True

Note that the function f (x) = x2 is not monotonic, so Theorem 7.5 can
not be applied and a formal calculation needs to be done by hand!
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Standard Normal Distribution
The cumulative distribution function of the standard normal distribution is
often denoted by Φ,

Φ(z) :=
1√
2ı

Z z

−∞
e−t2=2 dt:

In Mathematica, the cumulative distribution function is expressed through
the error function, defined as

erf(z) :=
2√
ı

Z z

0
e−t2 dt; erfc(z) := 1− erf(z):

Hence,
CDF@NormalDistribution@0, 1D, xD

1

2
ErfcB-

x

2
F
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Standard Normal Distribution
7.6. Example. The breaking strength of a syn-
thetic fabric is denoted X, and it is normally
distributed with mean — = 800N and stan-
dard deviation ff = 12N.
A purchaser of the fabric requires the fabric
to have a strength of at least 772N. A fabric
sample is randomly selected and tested. To
find P [X ≥ 772], we calculate

P [X < 772] = P

»
X − —

ff
<

772− 800

12

–
= P [Z < −2:33]
= Φ(−2:33) = 0:01: 772 800

x

0.01

0.02

0.03

fX(x)

Hence the sample is 99% likely to pass inspection.
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Standard Normal Distribution
7.7. Example. Let X denote the amount of radiation that can be absorbed
by an individual before death ensues. Assume that X is normal with a
mean dosage of 500 roentgens and a standard deviation of 150 roentgens.
Above what dosage level will only 5% of those exposed survive?
Here we want to find x0 such that P [X ≥ x0] = 0:05. Standardizing,

P [X ≥ x0] = P

»
X − 500

150
≥ x0 − 500

150

–
= P

»
Z ≥ x0 − 500

150

–
!
= 0:05

From a suitable table, P [Z ≥ 1:64] = 0:0505 and P [Z ≥ 1:65] = 0:0495.
Interpolating, we take P [Z ≥ 1:645] ≈ 0:0500, so we have

x0 − 500 roentgen
150 roentgen = 1:645 ⇔ x0 = 746:75 roentgen :
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Estimates on Variability
In general, the following estimates are often useful:
7.8. Theorem. Let X be normally distributed with parameters — and ff.
Then

P [−ff < X − — < ff] = 0:68

P [−2ff < X − — < 2ff] = 0:95

P [−3ff < X − — < 3ff] = 0:997

Hence 68% of the values of a normal random variable lie within one
standard deviation of the mean, 95% lie within two standard deviations,
and 99.7% lie within three standard deviations. This rule of thumb will be
especially important in statistics, where the number of “extraordinary”
events needs to be judged.
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Estimates on Variability
7.9. Example. Table of mean weights and heights of 12-month-old babies
from a Chinese infant care book.

Jiping Liu, 0-12 Months infant health and parenting guide, Sichuan Children’s Publishing House, 2008, ISBN 978-7-5365-4392-8
[Chinese; original title 0-12个月婴⼉健康养育指南 by刘纪平.]
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The Chebyshev Inequality
Let c > 0 be any real number. Then

E[X2] =

Z ∞

−∞
x2fX(x) dx ≥

Z
|x |≥c

x2fX(x) dx

≥ c2
Z
|x |≥c

fX(x) dx

= c2 · P [|X| ≥ c]

More generally, for k ∈ N \ {0},

P [|X| ≥ c] ≤ E[|X|k ]
ck

: (7.1)
Pafnuty Lvovich Chebyshev (1821-1894).
File:Pafnuty Lvovich Chebyshev.jpg. (2017,
December 2). Wikimedia Commons, the free
media repository.

This is one version of Chebyshev’s inequality. The inequality also holds
for discrete random variables, with an analogous proof.

https://commons.wikimedia.org/w/index.php?title=File:Pafnuty_Lvovich_Chebyshev.jpg&oldid=270372963
https://commons.wikimedia.org/w/index.php?title=File:Pafnuty_Lvovich_Chebyshev.jpg&oldid=270372963
https://commons.wikimedia.org/w/index.php?title=File:Pafnuty_Lvovich_Chebyshev.jpg&oldid=270372963
https://commons.wikimedia.org/w/index.php?title=File:Pafnuty_Lvovich_Chebyshev.jpg&oldid=270372963
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Variability Estimate from Chebyshev’s Inequality
If we replace X with X − — in (7.1) and set k = 2 and c = m · ff, m > 0,
we obtain the estimate

P
ˆ
|X − —| ≥ mff

˜
≤ 1

m2
: (7.2)

or, equivalently,

P [−mff < X − — < mff] ≥ 1− 1

m2
(7.3)

Comparing (7.2) with Theorem 7.8, we see that the estimates in the
theorem are tighter.
This is not surprising, as Chebyshev’s rule is valid for any random variable
with finite second moment, while the previous theorem uses the specific
properties of the normal distribution.
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(Im-)Practical Application of Chebyshev’s Inequality
7.10. Example. From an analysis of company records, a materials control
manager estimates that the mean and standard deviation of the “lead
time” required in ordering a small valve are 8 days and 1.5 days,
respectively. She does not know the distribution of the lead time, but she
is willing to assume the estimates of the mean and standard deviation to
be absolutely correct.
The manager would like to determine a time interval such that the
probability is at least 8/9 that the order will be received during that time.
That is,

1− 1

k2
=

8

9
;

so that k = 3 and —± kff = (8± 4:5) days.
This interval may well be too large to be of any value to the manager, in
which case she may elect to learn more about the distribution of lead
times.
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Approximating the Binomial Distribution

Abraham De Moivre (1667-1754).
Portrait. Faber. 1736.
File:Abraham de moivre.jpg.
(2015, October 30). Wikimedia
Commons, the free media
repository.

Pierre-Simon de Laplace
(1749-1827). Engraving.
File:Pierre-Simon-Laplace
(1749-1827).jpg. (2017, June 6).
Wikimedia Commons, the free
media repository.

Long before Gauß discovered the normal dis-
tribution in 1801, it had been published 60
years earlier, in 1738. De Moivre had wanted
to approximate the shape of the binomial dis-
tribution, considering the behavior of 3600
coin tosses. In 1810, Laplace proved the gen-
eral result for 0 < p < 1.

7.11. Theorem of De Moivre-Laplace. Denote by Sn the number of
successes in a sequence of n i.i.d. Bernoulli trials with probability of
success 0 < p < 1. Then

lim
n→∞

P
h
a <

Sn − npp
np(1− p)

≤ b
i
=

1√
2ı

Z b

a
e−x2=2 dx:

https://commons.wikimedia.org/w/index.php?title=File:Abraham_de_moivre.jpg&oldid=177400980
https://commons.wikimedia.org/w/index.php?title=File:Abraham_de_moivre.jpg&oldid=177400980
https://commons.wikimedia.org/w/index.php?title=File:Abraham_de_moivre.jpg&oldid=177400980
https://commons.wikimedia.org/w/index.php?title=File:Abraham_de_moivre.jpg&oldid=177400980
https://commons.wikimedia.org/w/index.php?title=File:Abraham_de_moivre.jpg&oldid=177400980
https://commons.wikimedia.org/w/index.php?title=File:Abraham_de_moivre.jpg&oldid=177400980
https://commons.wikimedia.org/w/index.php?title=File:Pierre-Simon-Laplace_(1749-1827).jpg&oldid=246786366
https://commons.wikimedia.org/w/index.php?title=File:Pierre-Simon-Laplace_(1749-1827).jpg&oldid=246786366
https://commons.wikimedia.org/w/index.php?title=File:Pierre-Simon-Laplace_(1749-1827).jpg&oldid=246786366
https://commons.wikimedia.org/w/index.php?title=File:Pierre-Simon-Laplace_(1749-1827).jpg&oldid=246786366
https://commons.wikimedia.org/w/index.php?title=File:Pierre-Simon-Laplace_(1749-1827).jpg&oldid=246786366
https://commons.wikimedia.org/w/index.php?title=File:Pierre-Simon-Laplace_(1749-1827).jpg&oldid=246786366
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Approximating the Binomial Distribution
Intuitively, for large n, the binomial distribution with parameters n and p
behaves as a normal distribution with mean — = np and variance
ff2 = npq. This is illustrated below for n = 20 and p = 0:4:

2 4 6 8 10 12 14 16 18 20

x

PHX � xL

The height of the vertical bars represents the values of P [X = x ] according
to the binomial distribution, while the density curve of the corresponding
normal distribution has been superimposed.
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Approximating the Binomial Distribution
We would like to use the normal distribution to approximate the
cumulative distribution function of the binomial distribution.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

x

PHX � xL
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Approximating the Binomial Distribution
It is clear that for each y = 0; : : : ; 20 the sum over all x ≤ y corresponds to
the area of the bars to the left of y . Superimposing the normal distribution,
we see that we can approximate this sum by integrating to y + 1=2:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

x

PHX � xL
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Approximation and the Half-Unit Correction
Hence, for y = 0; : : : ; n,

P [X ≤ y ] =
yX

x=0

 
n

x

!
px(1− p)n−x ≈ Φ

 
y + 1=2− npp

np(1− p)

!
:

This additional term 1=2 is known as the half-unit correction for the
normal approximation to the cumulative binomial distribution function. It
is necessary because in practice we do not have the limit n→∞ but rather
a finite value of n, which may not even be especially large.
This approximation is good if p is close to 1=2 and n > 10. Otherwise, we
require that

np > 5 if p ≤ 1=2 or n(1− p) > 5 if p > 1=2:
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Approximating the Binomial Distribution
7.12. Example. In sampling from a production process that produces items
of which 20% are defective, a random sample of 100 items is selected each
hour of each production shift. The number of defectives in a sample is
denoted by X.
To find, say, P [X ≤ 15] we might use the normal approximation as follows:

P [X ≤ 15] ≈ P

»
Z ≤ 15− 100 · 0:2√

100 · 0:2 · 0:8

–
= P [Z ≤ −1:25]

= Φ(−1:25) = 0:1056

The half-unit correction would instead give

P [X ≤ 15] ≈ P

»
Z ≤ 15:5− 20

4

–
= 0:130

The correct result is P [X ≤ 15] =
15P
k=0

`100
k

´
0:2k0:8100−k = 0:1285.
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Lyapunov’s Central Limit Theorem

Aleksandr Mikhailovich Lyapunov
(1857-1918). File:Alexander Ljapunow
jung.jpg. (2017, January 29).
Wikimedia Commons, the free media
repository.

Today there exist various “Central Limit Theorems” that
generalize the Theorem of De Moivre - Laplace. The fol-
lowing is due to Lyapnuov and was established a century
after Laplace’s work.
7.13. Central Limit Theorem. Let (Xi ) be a sequence of
independent, but not necessarily identical random vari-
ables whose third moments exist and satisfy a certain
technical condition.

Let
Yn = X1 + · · ·+ Xn:

Then for any z ∈ R,

P

"
Yn − E[Yn]p

Var[Yn]
≤ z

#
n→∞−−−→ 1√

2ı

Z z

−∞
e−x2=2 dx:

https://commons.wikimedia.org/w/index.php?title=File:Alexander_Ljapunow_jung.jpg&oldid=231424264
https://commons.wikimedia.org/w/index.php?title=File:Alexander_Ljapunow_jung.jpg&oldid=231424264
https://commons.wikimedia.org/w/index.php?title=File:Alexander_Ljapunow_jung.jpg&oldid=231424264
https://commons.wikimedia.org/w/index.php?title=File:Alexander_Ljapunow_jung.jpg&oldid=231424264
https://commons.wikimedia.org/w/index.php?title=File:Alexander_Ljapunow_jung.jpg&oldid=231424264
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Experimental Error
Lyapunov’s Central Limit theorem is at the core of the belief by
experimentalists that “random error” may be described by the normal
distribution. The idea is that any “random disturbance” of a measurement
is the sum of many inscrutable and random effects which individually
cannot be tracked. However, their sum will be well-described by the normal
distribution.
The French physicist Gabriel Lippman wrote to Henri Poincare:

Tout le monde y croit cependent, car les experimenteurs
s’imaginent que c’est un theorem de mathematiques, et les
mathematiciens que c’est un fait experimental.

“Everybody believes in the exponential law of errors: the experimenters,
because they think it can be proved by mathematics; and the
mathematicians, because they believe it has been established by
observation.”
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8. Multivariate Random Variables
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Elements of Probability Theory
1. Elementary Probability
2. Conditional Probability
3. Discrete Random Variables
4. Expectation, Variance and Moments
5. The Pascal, Negative Binomial and Poisson Distributions
6. Continuous Random Variables
7. The Normal Distribution
8. Multivariate Random Variables
9. The Weak Law of Large Numbers
10. The Hypergeometric Distribution
11. Transformation of Random Variables
12. Reliability
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Multivariate Random Variables
Often, a single random variable is not sufficient to describe a physical
problem. This may, for example, be the case when we are interested in the
effect of one random quantity on another. In such a case we consider two
(or more) random variables together.
Formally, we then define a “vector” of which each component is itself a
(“scalar”) random variable.
We call such a vector a random vector or a multi-variate random
variable or an n-dimensional random variable. The components can be
discrete or continuous random variables, and even mixtures of the two.
In this section we will for the most part focus on bivariate
(two-dimensional) random variables where either both components are
discrete or both components are continuous random variables.
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Discrete Multivariate Random Variables
8.1. Definition. Let S be a sample space and ˙ a countable subset of Rn.
A discrete multivariate random variable is a map

XXX : S → ˙

together with a function fXXX : ˙ → R with the properties that

(i) fXXX(x) ≥ 0 for all x = (x1; : : : ; xn) ∈ ˙ and

(ii) P
x∈˙

fXXX(x) = 1.

The function fXXX is called the joint density function of the random
variable XXX.
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Discrete Multivariate Random Variables
We consider the multivariate random variable XXX to have n components,
i.e.,

XXX = (X1; : : : ; Xn):

We often write
fXXX(x1; : : : ; xn) = fX1···Xn(x1; : : : ; xn)

The joint density function fXXX gives the probability that the tuple
(X1; : : : ; Xn) assumes a given value x ∈ Rn, i.e.,

fXXX(x1; : : : ; xn) = P [X1 = x1 and X2 = x2 and … and Xn = xn]:

Given two random variables, we may write (X; Y ) instead of (X1; X2) and
use similar notation for three or larger numbers of components.
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Discrete Bivariate Random Variables
8.2. Example. Suppose we roll two six-sided dice, obtaining results (i ; j)
with i ; j = 1; : : : ; 6. Let us define

X := i + j mod 5; Y = i − j mod 5:

Then we can find the values of the probability density function by
Cardano’s rule. The number of outcomes leading to each event (X; Y ) is

x=y 0 1 2 3 4

0 1 1 4 1 1
1 1 2 1 2 1
2 2 1 1 1 2
3 2 1 1 1 2
4 1 2 1 2 1

so each number in the table must be divided by 36 to obtain the
corresponding probability. For example, P [X = 1 and Y = 1] = 1=18.
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Marginal Density
While each element of the table gives us
36 · P [X = x and Y = y ], we can find the
probability of the event X = x by adding up
all relevant probabilities:

P [X = x ] =
4X

y=0

P [X = x and Y = y ]

x=y 0 1 2 3 4

0 1 1 4 1 1
1 1 2 1 2 1
2 2 1 1 1 2
3 2 1 1 1 2
4 1 2 1 2 1

For example,

P [X = 0] = (1 + 1 + 4 + 1 + 1)=36 = 8=36:

This procedure can be justified by considering the corresponding en=vent
in the sample space.
By summing in this way, we can determine P [X = x ] for all x . This is
called the marginal density for X.
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Marginal Density of a Discrete Random Variable
8.3. Definition. Let (XXX; fXXX) be a discrete multivariate random variable. We
define the marginal density fxk for Xk , k = 1; : : : ; n, by

fXk (xk) =
X

x1;:::;xk−1;xk+1;:::;xn

fXXX(x1; : : : ; xn):

8.4. Example.

x=y 0 1 2 3 4 fX(x)

0 1 1 4 1 1 8=36
1 1 2 1 2 1 7=36
2 2 1 1 1 2 7=36
3 2 1 1 1 2 7=36
4 1 2 1 2 1 7=36

fY (y) 7=36 7=36 8=36 7=36 7=36 1
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Independence of Random Variables
If (XXX; fXXX) is a discrete bivariate random variable, i.e., XXX = (X1; X2), we
say that X1 and X2 are independent if

P [X1 = x1 and X2 = x2] = P [X1 = x1] · P [X2 = x2]:

In other words, if
fXXX(x1; x2) = fX1(x1) · fX2(x2):

(The joint density is the product of the marginal densities.)
It is possible to generalize this in the obvious (but notationally
cumbersome) way to n-variate random variables.
We will mostly be interested in cases where XXX = (X1; : : : ; Xn) and all the
components are independent, i.e.,

fXXX(x1; : : : ; xn) = fX1(x1) · · · fXn(xn):
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Independence of two Random Variables
8.5. Example.

x=y 0 1 2 3 4 fX(x)

0 1 1 4 1 1 8=36
1 1 2 1 2 1 7=36
2 2 1 1 1 2 7=36
3 2 1 1 1 2 7=36
4 1 2 1 2 1 7=36

fY (y) 7=36 7=36 8=36 7=36 7=36 1

The variables X and Y are not independent since, for example,

P [X = 1 and Y = 1] = 1=18

but
P [X = 1] · P [Y = 1] =

7

36
· 7
36

and the two expressions are not equal.
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Conditional Density
Suppose that (XXX; fXXX) is a discrete bivariate random variable, i.e.,
XXX = (X1; X2), and that X2 is known to have taken on a certain value.
Then, applying elementary probability laws,

P [X1 = x1 | X2 = x2] =
P [X1 = x1 and X2 = x2]

P [X2 = x2]
=

fX1X2(x1; x2)

fX2(x2)
:

We hence define the conditional density

fX1|x2(x1) :=
fX1X2(x1; x2)

fX2(x2)
whenever fX2(x2) > 0,

where fX2 is the marginal density of X2.
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Continuous Random Variables
8.6. Definition. Let S be a sample space. A continuous multivariate
random variable is a map

XXX : S → R
n

together with a function fXXX : Rn → R with the properties that

(i) fXXX(x) ≥ 0 for all x = (x1; : : : ; xn) ∈ Rn and

(ii)
R
Rn fXXX(x) dx = 1.

The function fXXX is called the joint density function of the random
variable XXX.
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Continuous Random Variables
The integral of fXXX is interpreted as the probability that XXX assumes values
in a given domain ˙ ⊂ Rn,

P [XXX ∈ ˙] =

Z
˙
fXXX(x) dx:

For example, if XXX = (X1; X2),

P [a ≤ X1 ≤ b and c ≤ X2 ≤ d ] =

Z b

a

Z d

c
fX1X2(x1; x2) dx1 dx2

for a ≤ b, c ≤ d .
But of course non-rectangular domains can be considered as well.
We now make definitions for continuous random variables that are
completely analogous to those for the discrete case.
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Continuous Multivariate Random Variables
We define the marginal density of Xk , k = 1; : : : ; n, by

fXk (xk) =

Z
Rn−1

fXXX(x) dx1 : : : dxk−1 dxk+1 : : : dxn:

We say that two continuous random variables are independent if

fXXX(x1; x2) = fX1(x1) · fX2(x2):

and we are often interested in the case where a full set of n components of
a multivariate random variable is independent:

fXXX(x1; : : : ; xn) = fX1(x1) · · · fXn(xn):

The conditional density for continuous bivariate random variables is
similarly

fX1|x2(x1) :=
fX1X2(x1; x2)

fX2(x2)
whenever fX2(x2) > 0.
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Expectation
We define the expected value or expectation for XXX as the vector

E[XXX] =

0B@E[X1]
...

E[Xn]

1CA
where E[Xk ] is calculated using the marginal density of Xk , k = 1; : : : ; n,

E[Xk ] =
X
xk

xk fXk (xk) =
X
x∈˙

xk fXXX(x)

and

E[Xk ] =

Z
R

xk fXk (xk) dxk =

Z
Rn

xk fXXX(x) dx

for discrete and continuous random variables, respectively.
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Expectation for Discrete Bivariate Random Variables
8.7. Example.

x=y 0 1 2 3 4 fX(x)

0 1 1 4 1 1 8=36
1 1 2 1 2 1 7=36
2 2 1 1 1 2 7=36
3 2 1 1 1 2 7=36
4 1 2 1 2 1 7=36

fY (y) 7=36 7=36 8=36 7=36 7=36 1

E[X] =
X

(x;y)∈˙
x · fXY (x; y) =

4X
x=0

x · fX(x) =
70

36

E[Y ] =
X

(x;y)∈˙
y · fXY (x; y) =

4X
y=0

y · fY (y) = 2
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Expectation for Functions of Random Vectors
Suppose ’ : Rn → R is a continuous function. Then

’ ◦XXX : S → R

defines a scalar random variable. It is possible to prove that in this case,

E[’ ◦XXX] =
X
x∈˙

’(x)fXXX(x); or E[’ ◦XXX] =

Z
Rn

’(x)fXXX(x) dx:

For ’(x1; : : : ; xn) = xk we regain the definition of E[Xk ].
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Expectation for the Sum of Two Random Variables
8.8. Remark. If (X; Y ) is a discrete bivariate random variable and
’(x; y) = x + y , we have

E[X + Y ] =
X

(x;y)∈˙
(x + y) · fXY (x; y)

=
X

(x;y)∈˙
x · fXY (x; y) +

X
(x;y)∈˙

y · fXY (x; y)

= E[X] + E[Y ]:

This establishes the addition property of the expectation taht we
introduced earlier.
An analogous calculation may be used for continuous random variables.
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Variance and Covariance for Bivariate Random Variables
Let us calculate the variance of the sum of two random variables:

Var[X + Y ] = E
ˆ`
(X + Y )− E[X + Y ]

´2˜
= E

ˆ`
(X − E[X]) + (Y − E[Y ])

´2˜
= E

ˆ
(X − E[X])2 + (Y − E[Y ])2 + 2(X − E[X])(Y − E[Y ])

˜
= Var[X] + Var[Y ] + 2E

ˆ
(X − E[X])(Y − E[Y ])

˜
(8.1)

In general,
Var[X + Y ] ̸= Var[X] + Var[Y ]:

We define the covariance of (X; Y ),

Cov[X; Y ] = E[(X − —X)(Y − —Y )];

where we have used — to denote the expectations. Note that

Cov[X; Y ] = Cov[Y;X] and Cov[X;X] = Var[X]:
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The Covariance Matrix
For a multivariate random variable XXX we define the covariance matrix

Var[XXX] =

0BBBBB@
Var[X1] Cov[X1; X2] : : : Cov[X1; Xn]

Cov[X1; X2] Var[X2]
. . . ...

... . . . . . . Cov[Xn−1; Xn]

Cov[X1; Xn] : : : Cov[Xn−1; Xn] Var[Xn]

1CCCCCA :

It is possible to prove (through tedious calculation) that

Var[CXXX] = C Var[XXX]CT

where C ∈ Mat(n × n;R) is a constant n × n matrix with real coefficients.
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Covariance and Independence
Just as for the variance, a direct calculation yields

Cov[X; Y ] = E[XY ]− E[X] E[Y ]:

Furthermore, if two continuous random variables X and Y are independent,
then fXY (x; y) = fX(x)fY (y) and

E[XY ] =

ZZ
R2

xy · fXY (x; y) dx dy

=

ZZ
R2

xy · fX(x)fY (y) dx dy

=

„Z
R

x · fX(x) dx
«„Z

R

y · fY (y) dy
«

= E[X] E[Y ]
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Covariance and Independence
An analogous calculation works for discrete random variables. We have
hence proved:
I If X and Y are independent, then Cov[X; Y ] = 0.

However, the converse is not true:
I If Cov[X; Y ] = 0, then X and Y are not necessarily independent.

We note that we have also established that

Var[X + Y ] = Var[X] + Var[Y ]

if the random variables are independent.
The covariance is hence related to the independence of X and Y . However,
it is not a measure for dependence, since two dependent variables can still
have a vanishing covariance.
So we ask: what does the covariance actually measure?
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Standardizing Random Variables
We note that the covariance scales with X and Y , i.e., if X and Y take on
numerically large values, then the covariance will be large, while if if X and
Y take on small values, the covariance will be small. Therefore, by itself it
does not serve very well as a measure of any fundamental properties of X
and Y .
The solution is to standardize the random variables,

eX :=
X − —X

ffX

is the standardized variable for X (assuming that both mean and variance
of X exist and ffX ̸= 0).
Recall that

E[ eX] = 0; Var[ eX] = 1:
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The Pearson Correlation Coefficient

Karl Pearson (1857-1936) in 1912. File:Karl
Pearson, 1912.jpg. (2018, January 17).
Wikimedia Commons, the free media repository.

Instead of Cov[X; Y ] we now consider

Cov[ eX; eY ] = E[ eX eY ]− E[ eX] E[eY ]
=

Cov[X; Y ]p
Var[X] Var[Y ]

The right-hand side is now scale-independent and
unit-less (if X and Y have units).

This quotient is known as the Pearson coefficient of correlation of
(X; Y ) and denoted

ȷXY :=
Cov[X; Y ]p
Var[X] Var[Y ]

:

https://commons.wikimedia.org/w/index.php?title=File:Karl_Pearson,_1912.jpg&oldid=280418005
https://commons.wikimedia.org/w/index.php?title=File:Karl_Pearson,_1912.jpg&oldid=280418005
https://commons.wikimedia.org/w/index.php?title=File:Karl_Pearson,_1912.jpg&oldid=280418005
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Properties of the Correlation Coefficient
It can be shown that ȷXY has the following properties

(i) −1 ≤ ȷXY ≤ 1,

(ii) |ȷXY | = 1 if and only if there exist numbers ˛0; ˛1 ∈ R, ˛1 ̸= 0, such
that

Y = ˛0 + ˛1X

almost surely.

The proof is best performed in a vector-space setting, which we omit here.
The above properties give us a clue as to how the correlation coefficient
might be interpreted: if it has modulus one, then X and Y are in a
deterministically linear relationship. Let us therefore start from that angle.
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Measuring Linearity of X and Y

Suppose that X and Y are related in a linear fashion, say

Y = ˛0 + ˛1X; (8.2)

with ˛1 ̸= 0. Then

—Y = ˛0 + ˛1—X

and Var[Y ] = ˛2
1 Var[X], so

ffY = |˛1|ffX :
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Measuring Linearity of X and Y

Using the standardized variables, we find that

eY =
Y − —Y

ffY

=
˛0 + ˛1X − (˛0 + ˛1—X)

|˛1|ffX

=
˛1
|˛1|

X − —X

ffX

=
˛1
|˛1|

eX:

We conclude that X and Y are in a linear relationship if and only if the
standardized variables are either equal or the negative of each other.
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Measuring Linearity of X and Y

We now know that X and Y are deterministically linearly related if and
only if

eX + eY = 0 or eX − eY = 0:

In order to measure in how far X and Y are not linearly related, it makes
sense to consider the standard deviation of eX + eY and eX − eY . If either of
these were zero, the relationship would be deterministically linear.
We calculate

Var[ eX + eY ] = Var[ eX] + Var[eY ] + 2Cov[ eX; eY ] = 2 + 2%XY ;

Var[ eX − eY ] = Var[ eX] + Var[eY ]− 2Cov[ eX; eY ] = 2− 2%XY :

If either of these two variances is small, then eX and eY are “nearly
proportional” and so X and Y are “nearly linearly” related.
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The Fisher Transformation
In order to capture both of these positive quantities
in a single manner, let us consider their quotient,vuutVar[ eX + eY ]

Var[ eX − eY ] =
s

1 + ȷXY

1− ȷXY
∈ (0;∞)

If X and Y are linearly related, then this quotient will
be either very small or very large.
It is “mathematically nicer” to take the logarithm:

Ronald Fisher (1890-1962) in 1913.
File:Youngronaldfisher2.JPG. (2018, July 7).
Wikimedia Commons, the free media repository.

ln

0@
vuutVar[ eX + eY ]

Var[ eX − eY ]
1A =

1

2
ln

„
1 + ȷXY

1− ȷXY

«
= Artanh(ȷXY ) ∈ R: (8.3)

This is known as the Fisher transformation of ȷXY .

https://commons.wikimedia.org/w/index.php?title=File:Youngronaldfisher2.JPG&oldid=310030428
https://commons.wikimedia.org/w/index.php?title=File:Youngronaldfisher2.JPG&oldid=310030428
https://commons.wikimedia.org/w/index.php?title=File:Youngronaldfisher2.JPG&oldid=310030428
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Positive and Negative Correlation
It follows that

ȷXY = tanh

„
ln

„ffeX+eY
ffeX−eY

««
:

I If ȷXY > 0, then Var[ eX + eY ] > Var[ eX − eY ], which implies that the
relationship between X and Y is closer to eX = eY than to eX = −eY .
Hence, if X is large, Y tends to be large also.
We say that X and Y are positively correlated.

I If ȷXY < 0, then Var[ eX + eY ] < Var[ eX − eY ] and the situation is
reversed. If X is large, Y tends to be small.
We say that X and Y are negatively correlated.

Since X and Y are still random variables, a large value of X only indicates
a tendency for Y to be large/small but doesn’t guarantee this. The closer
ȷXY is to ±1, the more pronounced these effects are.
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The Bivariate Normal Distribution
8.9. Example. Suppose two random variables X and Y should each follow a
(marginal) normal distribution, but are not independent.
The most common model is the so-called bivariate normal distribution,
with density function

fXY (x; y) =
1

2ıffXffY
p
1− %2

e
− 1

2(1−%2)

»“
x−—X
ffX

”2

−2%

“
x−—X
ffX

”“
y−—Y
ffY

”
+

“
y−—Y
ffY

”2
–

where −1 < % < 1.
The marginal distributions can be shown to be normal, —X = E[X],
ff2
X = Var[X] (and similarly for Y ) and % = ȷXY is indeed the correlation

coefficient of X and Y .
Furthermore, X and Y are independent if and only if % = 0.
This distribution will be discussed in detail in the assignments.
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9. The Weak Law of Large Numbers
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The Weak Law of Large Numbers
We can now give a more precise formulation of the heuristic Law of Large
Numbers 2.3.
9.1. Weak Law of Large Numbers. Let X1; X2; X3; : : : be a sequence of
i.i.d. random variables with mean — and variance ff2. Then for any " > 0,

P

»˛̨̨̨
X1 + · · ·+ Xn

n
− —

˛̨̨̨
≥ "

–
n→∞−−−→ 0:

The Weak Law of Large Numbers essentially states that for any " the
likelihood of the average outcome of a sequence of i.i.d. random variables
deviating from the mean of the random variable by " or more converges to
zero as n→∞.
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The Weak Law of Large Numbers
The connection with the Law 2.3 is as follows: suppose A ⊂ S is an event.
Every time an experiment is performed, a Bernoulli random variable with
parameter p = P [A] counts whether A occurs or not. Then p = — = P [A]
is the mean of that random variable and

X1 + · · ·+ Xn

n

is the total number of times that A occurs divided by the number n of
experiments performed. Then the weak law of large number states that

P

»˛̨̨̨ number of times A occurs
number of times experiment is performed − P [A]

˛̨̨̨
≥ "

–
n→∞−−−→ 0

for any " > 0.
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The Weak Law of Large Numbers
Proof.
The proof is based on the Chebyshev inequality. We first note that using
the properties of the expectation and variance,

E

»
X1 + · · ·+ Xn

n
− —

–
=

E[X1] + · · ·+ E[Xn]

n
− E[—] =

n · —
n
− — = 0

and

Var

»
X1 + · · ·+ Xn

n
− —

–
=

Var[X1] + · · ·+ Var[Xn]

n
− Var[—]

=
n · ff2

n2
− 0 =

ff2

n
:

This implies

E

»„
X1 + · · ·+ Xn

n
− —

«2–
=

ff2

n
:



The Weak Law of Large Numbers Slide 232

The Weak Law of Large Numbers
Proof (continued).
Applying the Chebyshev inequality (7.1) with k = 2 to X = X1+···+Xn

n − —
we then have

P

»˛̨̨̨
X1 + · · ·+ Xn

n
− —

˛̨̨̨
≥ "

–
≤ ff2

"2
1

n

which proves the theorem.
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10. The Hypergeometric Distribution
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Drawing Balls from an Urn
The classical example of a sequence of non-independent trials involves
drawing colored balls from a box, traditionally called an urn.
Suppose that an urn contains a total of N balls, of which r are red balls
and N − r are black balls. We draw a sample of n balls from the urn. We
do not replace each ball after drawing it.
The random variable X describes the number of red balls in our sample.
If we were to replace each ball after drawing, X would follow a binomial
distribution. But now the probability of drawing a red ball depends on the
previous outcomes.
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Drawing Balls from an Urn
Given the number of objects N, the sample size n and the number r of red
balls, we can apply Cardano’s principle to calculate P [X = x ].
We will assume that

r > n and N − r > n;

so that we could have 0 to n black or red balls in our sample.
Then

P [exactly x red balls out of n selected]

=
(# ways to select x out of r balls) · (# ways to select n − x out of N − r balls)

# ways to select n out of N balls

=

`r
x

´`N−r
n−x

´`N
n

´
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The Hypergeometric Distribution
10.1. Definition. Let N; n; r ∈ N \ {0}, r; n ≤ N, and n < min{r; N − r}.
A random variable (X; fX) with

X : S → ˙ = {0; : : : ; n}

and density function fX : ˙ → R given by

fX(x) =

`r
x

´`N−r
n−x

´`N
n

´ (10.1)

is said to have a hypergeometric distribution with parameters N, n and r .
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The Hypergeometric Identity
The hypergeometric distribution takes its name from the hypergeometric
identity:  

a+ b

r

!
=

rX
k=0

 
a

k

! 
b

r − k

!
=
X

i+j=r

 
a

i

! 
b

j

!
: (10.2)

To understand this identity, note that

a+bX
r=0

 
a+ b

r

!
x r = (1 + x)a+b = (1 + x)a(1 + x)b

=
“ aX
i=0

 
a

i

!
x i
”“ bX

j=0

 
b

j

!
x j
”
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The Hypergeometric Identity
Using the definition of the binomial coefficients (1.3), we see that

`x
i

´
= 0

when i > x , so we may write
∞X
r=0

 
a+ b

r

!
x r =

“ ∞X
i=0

 
a

i

!
x i
”“ ∞X

j=0

 
b

j

!
x j
”

=
∞X
r=0

X
i+j=r

 
a

i

! 
b

j

!
x r ;

where we have used the Cauchy product of infinite series. Comparing
term-by-term, (10.2) follows.
The hypergeometric identity is the main ingredient in showing that (10.1)
actually defines a density function.
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Non-independent Bernoulli Trials
Let us write

X = X1 + X2 + · · ·+ Xn;

where each Xk is a Bernoulli random variable representing a single draw.
Here “success” means drawing a red ball, yielding Xk = 1. If we draw a
black ball on the kth draw, then Xk = 0.
We denote the probability of success by

pk = P [Xk = 1]

Of course, the Xk are not independent - the result of each draw (Xk)
influences the subsequent draws.
We therefore have to discuss the random vector (X1; X2; : : : ; Xn).
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The Bernoulli Trials are Identical
To understand the distribution of the random vector (X1; : : : ; Xn), we
consider the sample space S: Suppose that we order the N balls in all
conceivable ways, obtaining N! permutations.
Effectively, we are drawing all balls out of the urn to obtain the sample
space S, but only consider the events that include the first nnn balls to
calculate the probabilities of our random vector.
The probability that Xk = x , where x = 0 or 1, is then given by the
number of elements in the sample space that have x in the kth position.
Since the sample space consists of all possible permutations of the N
objects, we see that this probability does not depend on k. Therefore,

pk = p1 =
r

N
:

This shows that the Bernoulli trials are identical.
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Expectation and Variance
We can calculate

E[Xk ] = 0 · (1− pk) + 1 · pk = pk = p1 =
r

N

so
E[X] = E[X1 + · · ·+ Xn] = E[X1] + · · ·+ E[Xn] = n

r

N
:

It is interesting to note that this expectation is the same as it would be if
we were replacing the balls after drawing, i.e., if the number of red balls
were determined by the binomial distribution.
In order to calculate the variance, we first generalize (8.1) to

Var[X] = Var[X1 + · · ·+ Xn]

= Var[X1] + · · ·+ Var[Xn] + 2
X
i<j

Cov[Xi ; Xj ]:



The Hypergeometric Distribution Slide 243

Variance and Covariance
We need to calculate

Cov[Xi ; Xj ] = E[XiXj ]− E[Xi ] E[Xj ]:

For this, we note that XiXj is also a Bernoulli variable, since

XiXj =

(
1 if Xi = 1 and Xj = 1;

0 otherwise:

Then
E[XiXj ] = pi j := P [Xi = 1 and Xj = 1]:
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Variance and Covariance
As in the previous argument, the probability that Xi = x and Xj = y for
i ̸= j and x; y ∈ {0; 1} is given by the number of permutations among all
N! elements of the sample space that have x in the ith and y in the jth
position. Again it is clear that this number is independent of i and j , so

pi j = p12 = P [X1 = 1 and X2 = 1] =
r

N
· r − 1

N − 1
:

Note that for i = j we have

pi i = p11 = P [X1 = 1 and X1 = 1] =
r

N
:

Hence,

Var[Xi ] =
r

N

„
1− r

N

«
; Cov[Xi ; Xj ] = −

1

N
· r(N − r)

N(N − 1)
:
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Approximating the Hypergeometric Distribution
Since there are

`n
2

´
= n(n − 1)=2 pairs (i ; j) with i < j , an easy calculation

(do it yourself!) now gives

Var[X] = n
r

N

N − r

N

N − n

N − 1

This expression is similar to that for the binomial distribution; if we were
replacing the balls after drawing, we would have

p =
r

N
; q =

N − r

N

and since the variance of the binomial distribution is npq, we see that the
expression above differs by

N − n

N − 1
:

In fact, the binomial distribution may be used to approximate the
hypergeometric distribution if the sampling fraction n=N is small (less
than 0:05).
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Approximating the Hypergeometric Distribution
10.2. Example. A production lot of 200 units has 8 defectives. A random
sample of 10 units is selected, and we want to find the probability that the
random sample will contain exactly one defective.
The true probability is

P [X = 1] =

`r
x

´`N−r
n−x

´`N
n

´ =

`8
1

´`192
9

´`200
10

´ = 0:288:

We note that the sampling fraction is n=N = 10=200 = 0:05, so we can use
the binomial approximation.
Then p = r=N = 8=200 = 0:04 and

P [X = 1] ≈
 
10

1

!
(0:04)1(0:96)9 = 0:277:
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11. Transformation of Random Variables
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Transformation of Variables
The following theorem allows us to perform transformations of random
variables and obtain the densities of the transformed variables.

11.1. Theorem. Let (XXX; fXXX) be a continuous multivariate random variable
and let ’ : Rn → R

n be a differentiable, bijective map with inverse ’−1.
Then YYY = ’ ◦XXX is a continuous multivariate random variable with density

fYYY (y) = fXXX ◦ ’−1(y) · |detD’−1(y)|;

where D’−1 is the Jacobian of ’−1.

We will not prove this theorem, which is based on the substitution rule for
multivariable integrals.
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Transformation of Variables
We can use transformation of bivariate random variables to obtain densities
of sums and products of random variables, as the following example shows:
11.2. Lemma. Let ((X; Y ); fXY ) be a continuous bivariate random variable.
Let U = X=Y . Then the density fU of U is given by

fU(u) =

Z ∞

−∞
fXY (uv; v) · |v | dv:

Proof.
Consider the transformation ’ : (X; Y ) 7→ (U; V ) where

’(x; y) =

 
x=y

y

!
:

Then
’−1(u; v) =

 
uv

v

!
:
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Transformation of Variables
Proof.
We calculate

D’−1(u; v) =

 
@x
@u

@x
@v

@y
@u

@y
@v

!
=

 
v u
0 1

!
so

|detD’−1(u; v)| = |v |:

Then
fUV (u; v) = fXY (uv; v)|v |:

The marginal density fU is given by

fU(u) =

Z ∞

−∞
fUV (u; v) dv =

Z ∞

−∞
fXY (uv; v) · |v | dv:
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The Chi Random Variable
Consider the following problem: a point z = (z1; : : : ; zn) in Rn is randomly
selected in such a way that every coordinate value zi , i = 1; : : : ; n, is
determined independently of the other coordinates by a random variable
Zi . Suppose that each Zi follows a standard normal distribution.
We are interested in the distribution function of the random variable

ffln :=

vuut nX
i=1

Z2
i

which describes the distance of the selected point from the origin. For
instance, while the expected value of each coordinate is E[Zi ] = 0, we do
not know the expected distance from the origin, E[ffln].
We say that ffln is a chi random variable and that it follows a chi
distribution with n degrees of freedom.
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The Chi Distribution
To find the density fffln , we consider the cumulative distribution function
Fffln ,

Fffln(y) = P [ffln ≤ y ]:

Clearly, Fffln(y) = 0 for y < 0. For y ≥ 0,

Fffln(y) = P [ffln ≤ y ] = P [ffl2
n ≤ y2] = P

"
nX

k=1

Z2
k ≤ y2

#

=

ZPn

k=1
z2k≤y2

fZ1:::Zn(z1; : : : ; zn) dz1 : : : dzn

Note that the n independent standard normal variables Z1; : : : ; Zn have
joint density

fZ1:::Zn(z1; : : : ; zn) =
1

(2ı)n=2
e−
Pn

k=1
z2k=2:
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The Chi Distribution
We hence obtain

Fffln(y) =

Z
Pn

k=1
z2k≤y2

(2ı)−n=2e−
Pn

k=1
z2k=2 dz1 : : : dzn:

It becomes convenient to introduce polar coordinates (r; „1; : : : ; „n−1) with
r > 0, 0 < „n−1 < 2ı and 0 < „k < ı for k = 1; : : : ; n − 2 as follows:

x1 = r cos „1

x2 = r sin „1 cos „2

x3 = r sin „1 sin „2 cos „3
...

xn−1 = r sin „1 sin „2 : : : sin „n−2 cos „n−1

xn = r sin „1 sin „2 : : : sin „n−2 sin „n−1:
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The Chi Distribution
The integral becomes

Fffln(y) =

Z 2ı

0

Z ı

0
· · ·
Z ı

0

Z y

0
(2ı)−n=2e−r2=2 rn−1

×D(„1; : : : ; „n−1) dr d„1 : : : d„n−2 d„n−1

where D(„1; : : : ; „n−1) is independent of r . Writing

Cn = (2ı)−n=2
Z 2ı

0

Z ı=2

−ı=2
· · ·
Z ı=2

−ı=2
D(„1; : : : ; „n−1) d„1 : : : d„n−2 d„n−1

we have

Fffln(y) = Cn

Z y

0
e−r2=2 rn−1 dr:
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The Chi Distribution
We determine Cn from

1 = lim
y→∞

Fffln(y) = Cn

Z ∞

0
e−r2=2 rn−1 dr = Cn`

„
n

2

«
2n=2−1;

where we have substituted ȷ = r2=2 in the integral to obtain the gamma
function. It follows that

Fffln(y) =
1

`
`
n
2

´
2n=2−1

Z y

0
e−r2=2 rn−1 dr:

and the density of ffln is given by

fffln(y) = F ′
ffln
(y) =

2

2n=2`
`
n
2

´yn−1e−y2=2: (11.1)

for y ≥ 0 (and fffln(y) = 0 for y < 0).
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The Chi-Squared Distribution
In statistics, we will be particularly interested in the chi-squared random
variable with n degrees of freedom,

ffl2
n =

nX
i=1

Z2
i : (11.2)

where again Z1; : : : ; Zn are independent standard normal random variables.
Hence, a chi-squared random variable represents the sum of the squares of
independent standard normal variables.
We obtain the density of ffl2

n by again considering the cumulative
distribution function: For y ≥ 0,

Fffl2
n
(y) = P [ffl2

n ≤ y ] = P [−√y ≤ ffln ≤
√
y ]

=
1

`
`
n
2

´
2n=2−1

Z √
y

0
e−r2=2 rn−1 dr
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The Chi-Squared Distribution
Differentiating and applying the chain rule, we have

fffl2
n
(y) = F ′

ffl2
n
(y) =

1

`
`
n
2

´
2n=2−1

d

dy

Z √
y

0
e−r2=2 rn−1 dr

=
1

2n=2`
`
n
2

´yn=2−1e−y=2:

Now if y < 0,

Fffl2
n
(y) = P [ffl2

n < y ] ≤ P [ffl2
n < 0] = 0;

so differentiation yields fffl2
n
(y) = 0 for y < 0.

The density fffl2
n

is called a chi-squared distribution. We have already
remarked that it is a gamma distribution with ˛ = 2 and ¸ = n=2.
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The Sum of Independent Chi-Squared Variables
Suppose we have two independent chi-squared random variables with m
and n degrees of freedom, ffl2

m and ffl2
n. Then we can write

ffl2
m =

mX
i=1

X2
i ; ffl2

n =
nX

j=1

Y 2
j

where the Xi and Yj , i = 1; : : : ; m, j = 1; : : : ; n, are independent standard
normal random variables. Now the sum

ffl2
m+n := ffl2

m + ffl2
n =

mX
i=1

X2
i +

nX
j=1

Y 2
j

is clearly the sum of m + n squares of independent standard normal
random variables. Therefore, it also follows a chi-squared distribution, but
with m + n degrees of freedom.
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The Sum of Independent Chi-Squared Variables
We have the following general result:
11.3. Lemma. Let ffl2

‚1 ; : : : ; ffl
2
‚n be n independent random variables

following chi-squared distributions with ‚1; : : : ; ‚n degrees of freedom,
respectively. Then

ffl2
¸ :=

nX
k=1

ffl2
‚k

is a chi-squared random variable with ¸ =
nP

k=1
‚k degrees of freedom.
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12. Reliability
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A Black Box System
Consider a “black box” unit A:

A

We don’t care what the unit A does or what it looks like inside. We simply
assume that at time t = 0 the unit A is working. Then at any time t > 0,
either
I A is working or
I A has failed.

When A fails, it fails completely and can not be repaired.
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Failure Density
The time when A fails is random; we describe it by the continuous random
variable TA. The density of TA is called the

failure density fAfAfA.

The cumulative distribution function of TA is denoted by FA.
We note that

fA(t) = lim
∆t→0

P [t ≤ T ≤ t +∆t]

∆t

= lim
∆t→0

FA(t +∆t)− FA(t)

∆t
(12.1)
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Reliability Function
In practice, one often works with the

reliability function RARARA.

The reliability function gives the probability that A is working at time
t ≥ 0.
By our assumption, RA(0) = 1 and

RA(t) = 1− P [component A fails before time t]

= 1−
Z t

0
fA(s) ds

= 1− FA(t):
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Hazard Rate
For practical purposes, an important quantity is the

hazard rate %A%A%A.

defined by
%A(t) := lim

∆t→0

P [t ≤ T ≤ t +∆t | t ≤ T ]

∆t

(compare with (12.1)). We see that

%A(t) = lim
∆t→0

P [t ≤ T ≤ t +∆t]

P [T ≥ t] ·∆t

=
fA(t)

RA(t)
:

Question. The hazard rate is often directly observable in practice, while the
failure density f is not. Why is this so?
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Interpretation of the Hazard Rate
The hazard rate function % can be interpreted qualitatively as follows:

(i) If % is decreasing over an interval, then as time goes by a failure is
less likely to occur than it was earlier in the time interval. This
happens in situations in which defective systems tend to fail early. As
time goes by, the hazard rate for a well-made system decreases.

(ii) A steady hazard rate is expected over the useful life span of a
component. A failure tends to occur during this period due mainly to
random factors.

(iii) If % is increasing over an interval, then as time goes by a failure is
more likely to occur. This normally happens for systems that begin to
fail primarily due to wear.

A typical component may exhibit all these behaviors over its lifetime,
giving rise to a so-called bathtub curve.
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Interpretation of the Hazard Rate

The Bathtub Curve. File:File:Bathtub curve.svg. (2017, June 20). Wikimedia Commons, the free media repository.

https://commons.wikimedia.org/w/index.php?title=File:Bathtub_curve.svg&oldid=248543934
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Finding the Reliability Function
Often one has information on %, but not of the failure density f or
reliability function R.
12.1. Theorem. Let X be a random variable with failure density f ,
reliability function R and hazard rate %. Then

R(t) = e−
R t

0
%(x) dx :

Proof.
Since R(x) = 1− F (x) we have R′(x) = −F ′(x). Therefore,

%(x) =
f (x)

R(x)
=

F ′(x)

R(x)
= −R′(x)

R(x)

so
R′(x) = −%(x)R(x):

Solving this equation with R(0) = 1 (why?), we obtain the result.
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The Weibull Density
12.2. Example. One hazard function in widespread use is the function

%(t) = ¸˛t˛−1; t > 0; ¸; ˛ > 0

I If ˛ = 1, the hazard rate is constant
I If ˛ > 1, the hazard rate is increasing
I If ˛ < 1, the hazard rate is decreasing

The reliability function is given by

R(t) = e−
R t

0
¸˛x˛−1 dx = e−¸t˛ :

The failure density is given by

f (t) = %(t)R(t) = ¸˛t˛−1e−¸t˛ :

This density is called the Weibull density, named after W. Weibull who
introduced it in 1951.
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Weibull Distribution

12.3. Definition. A random variable (X; fX) is said to
have a Weibull distribution with parameters ¸ and ˛
if its density is given by

f (x) =

(
¸˛x˛−1e−¸x˛ ; x > 0;

0; otherwise,
¸; ˛ > 0:

Waloddi Weibull (1887-1970).Abernethy, R. B.,
Waloddi Weibull- História, Extract from The New
Weibull Handbook.

12.4. Theorem. Let X be a Weibull random variable with parameters ¸ and
˛. The mean and variance of X are given by

— = ¸−1=˛` (1 + 1=˛)

and
ff2 = ¸−2=˛` (1 + 2=˛)− —2:

https://sites.google.com/site/manutencaoclassemundial/disciplinas/08---26-10---sexta/rcm-reability-centered-maintenance/waloddi-weibull--historia
https://sites.google.com/site/manutencaoclassemundial/disciplinas/08---26-10---sexta/rcm-reability-centered-maintenance/waloddi-weibull--historia
https://sites.google.com/site/manutencaoclassemundial/disciplinas/08---26-10---sexta/rcm-reability-centered-maintenance/waloddi-weibull--historia
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The Uniform Distribution
12.5. Example. Consider a uniform failure density of

fX(x) =

(
1 0 ≤ x ≤ 1;

0 otherwise:

Hence, failure is equally likely at any time between x = 0 and x = 1. In
Mathematica, the uniform distribution is implemented as follows:

PDF@UniformDistribution@80, 1<D, xD

¶ 1 0 £ x £ 1

0 True



Reliability Slide 273

The Uniform Distribution
Question. Use the Mathematica commands SurvivalFunction and
HazardFunction to find the reliability function and the hazard rate for
the uniform distribution on [0; 1].
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Systems in Series and Parallel Configurations
Components in multiple-component systems can be installed in the system
in various ways. Many systems are arranged in “series” configuration, some
are in “parallel” and others are combinations of the two designs.
12.6. Definition.

(i) A system whose components are arranged in such a way that the
system fails whenever any of its components fail is called a series
system.

We may visualize the system configuration as follows:

A B C
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Systems in Series and Parallel Configurations
(ii) A system whose components are arranged in such a way that the

system fails only if all of its components fail is called a parallel
system.

B

A

C
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Systems in Series and Parallel Configurations
(iii) A complex system is made up of combinations of series and parallel

systems.

A

B C
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Reliability of Series and Parallel Systems
Assuming the components are independent of each other, the reliability of
a series system with k components is given by

Rseries(t) = P [no component fails before t] =
kY

i=1

Ri (t);

where Ri is the reliability of the ith component.
The reliability of a parallel system is given by

Rparallel(t) = 1− P [all components fail before t]

= 1−
kY

i=1

(1− Ri (t)):

The reliability for a complex system may be calculated by iteratively finding
the reliabilities of the component subsystems.
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Introduction to Statistics
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13. Samples and Data
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Populations and Random Variables
A population is a large (possibly infinite) collection of individuals, objects
or other instances which we want to describe probabilistically.
We assume that a population is described by a (scalar or multivariate)
random variable in the following sense:

For each member of the population, the random variable
takes on a given, deterministic, value.
The “randomness” of the random variable consists of the
randomness of selecting an individual from the population.

Mathematically, we denote by X = x the value of the random variable.
Selecting a given member of the population and measuring X gives one
instance of this random variable.
The probability density of X describes the likelihood of obtaining a value x
within a given range.
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Coin Flips
13.1. Example. Suppose we are flipping a coin with probability of heads p,
0 < p < 1. The population might be

all flips of this coin conducted in the future

while the random variable X might be

X =

(
1 coin turns heads up,
0 otherwise.

Hence X follows a Bernoulli distribution with parameter p.
Each individual flip of the coin would represent an independent and
identical copy of X.
We say that X describes the population, meaning that each member of the
population gives an identical copy of X. The population size is
indeterminate.
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Student Height
13.2. Example. Suppose we are interested in the body height of the
students of a certain university. Hence, our population might be described
as

all students who were enrolled in the university in 2020.

The random variable X would be

the height (in cm) of the population.

It may well be that X is described by a normal distribution with certain
mean and variance.
Each individual student would represent an independent and identical copy
of X. The population size is possibly large, but is a well-defined number.
Again, the student height X describes the population, meaning that each
student gives an identical copy of X.
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Probability Theory vs. Statistics
Given a population and a random variable, probability theory and statistics
are concerned with different questions:

Probability: The distribution of the random variable is fully
known. What inferences can be drawn from the known in-
formation?

Statistics: The probability distribution is not known, but per-
haps certain assumptions may be made. Data is gathered in
order to make inferences on the distribution, e.g., its shape,
expectation, variance etc.

In short: probability theory supposes one has complete knowledge of all
parameters of a distribution, while statistics attempts to gain information
on these parameters through experiments.
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Probability Theory vs. Statistics
13.3. Examples.

(i) When considering coin flips, probability theory might answer the
question: if p = 1=2, what is the likelihood of obtaining more than 60
heads when performing 100 coin flips?
A statistical question would be: If one obtains more than 60 heads in
100 coin flips, what can be said about p? Is there evidence that the
coin is not fair? Can we give an interval [p0; p1] ⊂ [0; 1] where we can
be 90% sure that p ∈ [p0; p1]?

(ii) Given a student population whose height follows a normal distribution
with mean — and variance ff2, probability theory would allow the
calculation of the percentage of students whose height is above or
below some threshold.
Statistics would attempt to gain information on — and ff2 by
measuring the height of a certain number of students.
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Random Sample (Mathematical Definition)
The remainder of this course is concerned with statistics, based on
methods and techniques of probability theory.
The basis of all statistical approaches is a random sample. The
mathematical definition is straightforward:

13.4. Definition. A random sample of size nnn from the distribution of X
is a collection of n independent random variables X1; : : : ; Xn, each with
the same distribution as X.
We say that X1; : : : ; Xn are independent, identically distributed (i.i.d.)
random variables.
Each population member is an identical copy of X. A random sample
comprises an independent selection of these copies.
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Random Samples in Practice
Heuristically, a random sample is a subset of a population whose members
have been selected in such a way, that the selection of one member does
not influence the selection of any other member.
This means that each member of a random sample has been selected
completely at random from the entire population and there is no bias in
the selection.
For example, in obtaining a random sample of coin flips, one might just flip
the coin. This is straightforward.
But to obtain a random sample of students enrolled at a university, it is
not sufficient to just walk into a classroom for a course in, e.g.,
mathematics and measure the height of all students found there.

Question. Why is this?
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Sample Size
We will generally discuss a random sample of size n from a population.
How large should n be?

I The size n of a random sample should not be too small. However, a
large population does not imply the need for a large random sample.
In fact, given the need to make inferences to some specified degree of
accuracy,

the required minimum size of n is absolute,
independent of the population size

I However, n should not be too large relative to the population size:

If n is greater than 5% of the population,
special care must be taken.

We will suppose that our sample sizes are always smaller than 5% of
the population.
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Sample Sizes That Are Too Large
13.5. Example. Suppose that you are interested in a population of 100
students (e.g., all graduate students in a certain school). You wish to know
what the proportion of students with body height greater than 180 cm is.
Suppose that (unknown to you), 20 out of 100 students have this height or
greater. Suppose you take a sample of 50 students.
Then, using the hypergeometric distribution, we can calculate that there is
10% chance that the random sample includes 13 or more students with
this height. Your guess for the proportion of students is then

13=50 = 26%:

However, in the remaining population, only 7=50 = 14% actually have this
height. The large sample has not only yielded a result that is different from
the true proportion (that is to be expected in statistics), it has also
perturbed the distribution of the remaining population.
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The 1936 US Presidential Election
In 1936, Alfred Landon, Republican and governor of
Kansas, was seeking to unseat the incumbent presi-
dent of the United States, Franklin D. Roosevelt.
The magazine The Literary Digest, attempted to
predict the outcome of the election a month be-
fore by conducting one of the biggest polls ever:
Based on magazine subscription data, club member-
ship lists and telephone directories, it queried more
than 10,000,000 individuals, sending them a mock
ballot.

Cover of the vol. 68, issue 8 (number 1609) of
19 February 1921 edition of the Literary
Digest. File:LiteraryDigest-19210219.jpg. (2018,
February 11). Wikimedia Commons, the free
media repository.

It received 2.4 million responses and concluded that Landon would win,
57% – 43%.
However, it turned out that Roosevelt won, 62% – 38%. What had gone
wrong?
Literature: https://www.math.upenn.edu/∼deturck/m170/wk4/lecture/case1.html

https://commons.wikimedia.org/w/index.php?title=File:LiteraryDigest-19210219.jpg&oldid=286417607
https://commons.wikimedia.org/w/index.php?title=File:LiteraryDigest-19210219.jpg&oldid=286417607
https://commons.wikimedia.org/w/index.php?title=File:LiteraryDigest-19210219.jpg&oldid=286417607
https://commons.wikimedia.org/w/index.php?title=File:LiteraryDigest-19210219.jpg&oldid=286417607
https://commons.wikimedia.org/w/index.php?title=File:LiteraryDigest-19210219.jpg&oldid=286417607
https://www.math.upenn.edu/~deturck/m170/wk4/lecture/case1.html
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Data
Suppose that we have obtained data from a random sample of size
n = 100:

Data

{79, 141, 228, 3, 20, 14, 97, 194, 28, 56, 75, 37, 122, 27, 10,

67, 23, 20, 103, 11, 92, 99, 64, 6, 118, 136, 682, 4, 70, 11,

74, 40, 16, 114, 8, 149, 97, 7, 317, 346, 188, 149, 68, 150,

88, 87, 155, 50, 26, 143, 126, 98, 153, 238, 30, 53, 132, 260,

296, 25, 61, 87, 33, 51, 74, 111, 72, 178, 4, 67, 43, 229, 156,

117, 104, 27, 23, 23, 186, 524, 107, 160, 41, 50, 352, 8, 153,

142, 306, 320, 85, 44, 116, 39, 264, 360, 192, 142, 44, 29}

For most people this is just a “wall of numbers.” The first step in
statistical analysis is to understand and visualize the data. FIn this
section, we will use the above data for our examples.
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Percentiles and Quartiles
We can characterize data by using percentiles:
The xth percentile is defined as the value dx of the data such that x% of
the values of the data are less than or equal to dx .
For instance, the 95th percentile is the datum such that 95% of the data is
equal to or less than that value.
A special case are quartiles:

I 25% of the data are no greater than the first quartile q1,
I 50% are no greater than the second quartile q2,
I 75% are no greater than the third quartile q3.

The second quartile is also known as the median of the data.
(You may compare with the notion of the median of a continuous
distribution, introduced previously).
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Percentile Growth Curves for US American Children
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Calculating Quartiles
Suppose that our list of n data has been ordered from smallest to largest,
so that

x1 ≤ x2 ≤ x3 ≤ · · · ≤ xn:

Then the median is given by

q2 =

(
x(n+1)=2 if n is odd
1
2(xn=2 + xn=2+1) if n is even

Furthermore, the first quartile is defined as
I the median of the smallest n=2 elements if n is even.
I the average of the median of the smallest (n − 1)=2 elements and the

median of the smallest (n + 1)=2 elements of the list if n is odd.
To calculate the third quartile, replace “smallest” with “largest” in the
above definition.
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Quartiles and Interquartile Range
Mathematica uses the definition of quartiles we have given here. Using the
sample data shown before,

Quartiles[Data]

35, 87,
299
2



The median (second quartile) is a measure of location of the data.
The difference between the third and first quartile is called the
interquartile range,

IQR = q3 − q1;

and is a measure of dispersion of the data.

InterquartileRange[Data]

229
2
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Histograms
A histogram is a (usually) vertical bar graph
where each bar represents the (usually) the
proportion or number of data in a given range.
The bars should show a rough silhouette of
the underlying distribution’s density function.

The histogram was first systematically introduced and analyzed by Karl
Pearson.
Given data in a certain range, the first step is to select the number of
categories, called bins, and correspondingly the width of each bin.

I Too few bins: The shape of the distribution can not be clearly
distinguished, important features will be “smoothed out.”

I Too many bins: Individual bars are not supported by sufficiently many
data points, spurious “features” may appear.
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Number of Categories and Category Width
The traditional number of bins k is due to Sturges, which he proposed in
1926:

k = ⌈log2(n)⌉+ 1; (13.1)

where the ceiling ⌈x⌉ denotes the smallest integer greater than x ∈ R.
Sturges’s rule is popular because it is simple and was based on one of the
first serious analyses of this question. However, his derivation is flawed and
the rule results in overly smoothed histograms for large n. Hence, various
alternatives have been proposed.
We remark that the software Microsoft Excel uses the rule

k =
˚√

n
ˇ
:

Instead of the number k of categories, we can also fix the bin width hhh.
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The Freedman-Diaconis Rule

David A. Freedman (1938-2008).
File:David A Freedman
(statistician) 1984.jpg. (2018,
October 23). Wikimedia Commons,
the free media repository.

Persi W. Diaconis (1945-).
File:Persi Diaconis 2010.jpg.
(2014, April 18). Wikimedia
Commons, the free media
repository.

Among the various improvements that have
been suggested, we will use the Freedman-
Diaconis rule for the bin width h, which was
presented in a publication in 1981.
The rule is designed to minimize the difference
between the actual density of the distribution
of the data and the height of the bars.

More precisely, if data of size n from the distribution of (X; fX) is gathered
on an interval I, then h should be chosen so that

‹2(h) = E

»Z
I
|H(x)− fX(x)|2 dx

–
is minimized, where H is the normalized height of the histogram bars.

https://commons.wikimedia.org/w/index.php?title=File:David_A_Freedman_(statistician)_1984.jpg&oldid=325114238
https://commons.wikimedia.org/w/index.php?title=File:David_A_Freedman_(statistician)_1984.jpg&oldid=325114238
https://commons.wikimedia.org/w/index.php?title=File:David_A_Freedman_(statistician)_1984.jpg&oldid=325114238
https://commons.wikimedia.org/w/index.php?title=File:David_A_Freedman_(statistician)_1984.jpg&oldid=325114238
https://commons.wikimedia.org/w/index.php?title=File:David_A_Freedman_(statistician)_1984.jpg&oldid=325114238
https://commons.wikimedia.org/w/index.php?title=File:Persi_Diaconis_2010.jpg&oldid=121638920
https://commons.wikimedia.org/w/index.php?title=File:Persi_Diaconis_2010.jpg&oldid=121638920
https://commons.wikimedia.org/w/index.php?title=File:Persi_Diaconis_2010.jpg&oldid=121638920
https://commons.wikimedia.org/w/index.php?title=File:Persi_Diaconis_2010.jpg&oldid=121638920
https://commons.wikimedia.org/w/index.php?title=File:Persi_Diaconis_2010.jpg&oldid=121638920
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The Freedman-Diaconis Rule
Analysis shows that this is realized if the bin width is

h ∼ 1
3
√
n

as n→∞.

According to Freedman and Diaconis, numerical calculations show that

h =
2 · IQR

3
√
n

yields good results for the estimation of the true density fX from the
histogram.
Literature: Freedman, D., Diaconis, P. On the histogram as a density estimator: L2

theory. Z. Wahrscheinlichkeitstheorie verw. Gebiete 57, 453–476 (1981).
https://doi.org/10.1007/BF01025868

https://www.math.upenn.edu/~deturck/m170/wk4/lecture/case1.html
https://www.math.upenn.edu/~deturck/m170/wk4/lecture/case1.html
https://www.math.upenn.edu/~deturck/m170/wk4/lecture/case1.html
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Determining the Bin Widths
The precision of the data {x1; : : : ; xn} is the smallest decimal place of the
values xi .
The sample range is given by

max
1≤i≤n

{xi} − min
1≤i≤n

{xi}:

If the number of bins k has been determined (e.g., by Sturges’s rule), then
the bin width is calculated as

h =
max{xi} −min{xi}

k
;

which should be rounded up to the precision of the data. If h is already at
the precision of the data, one smallest decimal unit should be added to h.
If the bin width has been determined (e.g., by the Freedman-Diaconis
rule), then nothing else needs to be done.
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Binning the Data
Next, the actual bins need to be determined. Ideally, the bins should have
the properties that
I The bins represent the data range well and do not go too far beyond it.
I Each datum should fall into exactly one bin.
I The bins should have the same width (in our approach here).

To achieve this, the ideal way is to take the smallest datum, subtract
one-half of the smallest decimal of the data and then successively add
the bin width to obtain the bins.
Since the bin boundaries are now at a higher precision than the data, no
datum can lie on the boundary. The rounding up of the bin widths (if
determined as above) will ensure that the data range is covered.
In practice, however, one often chooses “nice” values as bin boundaries.
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Histogram (Freedman-Diaconis Bin Widths)
In our example, we have 2·IQR

3√n
= 49:34, which we round up to 50.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
Values0

5

10

15

20

25

30

Count

Mathematica: Histogram[Data, "FreedmanDiaconis"]
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Some Pitfalls
I The documentation in Mathematica for the bin specification is

misleading. In fact, Mathematica will usually round the number of
bins and their boundaries to “nice” numbers, even if a specific rule is
given. This can be fixed by using the undocumented option
Histogram[Data, {"Raw", "FreedmanDiaconis"}].
Literature: User “Ajasja”, Problems specifying number of bins in Histogram, June
30, 2012, https://mathematica.stackexchange.com/a/7734

I In extreme cases, the offset (location of the first bin boundary) can
have a significant effect on the shape of the histogram.
Literature: Akinshin, A. Misleading Histograms, October 20, 2020,
https://aakinshin.net/posts/misleading-histograms/

https://mathematica.stackexchange.com/a/7734
https://aakinshin.net/posts/misleading-histograms/
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Histogram (Sturges’s Rule Bin Number)
The data range is 682− 3 = 679 and Sturges’s rule (based on 100 data)
gives k = 8. We calculate 679=8 = 84:88, which should be rounded up by
one to h = 85.

0 100 200 300 400 500 600 700
Values0

10

20

30

40

50

60
Count

Mathematica: Histogram[Data, "Sturges"]



Samples and Data Slide 306

Histogram (Sturges’s Rule Bin Number)
Using the "Raw" option gives the correct number of categories, but the
bin widths and the first bin boundary are calculated in some other fashion.

0 100 200 300 400 500 600 700
Values0

10

20

30

40

50

Count

Mathematica: Histogram[Data, {"Raw", "Sturges"}]
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Describing a Histogram

Symmetric,
unimodal

Positive skew,
unimodal

Negative skew,
unimodal

Symmetric,
no prominent mode Bimodal Multimodal
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Stem-and-Leaf Diagrams
A stem-and-leaf diagram is a rough way to get an
idea of the shape of the distribution of a random sam-
ple, while preserving some of its numeric information.
It consists of labeled rows of numbers, where the label
is called the stem and the other numbers are called
leaves. This idea was introduced by Tukey in bis fa-
mous book Exploratory Data Analysis in 1977.
To construct a stem-and-leaf diagram from a random
sample, follow these steps:

John W. Tukey (1915-2000).
http://1stmuse.com/the term software/

(i) Choose a convenient number of leading decimal digits to serve as
stems,

(ii) label the rows using the stems,
(iii) for each datum of the random sample, note down the digit following

the stem in the corresponding row,
(iv) turn the graph on its side to get an impression of its distribution.

http://1stmuse.com/the_term_software/
http://1stmuse.com/the_term_software/
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Stem-and-Leaf Diagrams
We will continue to use the data of Slide 292.
The package StatisticalPlots includes a command for stem-and-leaf
plots:

Needs["StatisticalPlots`"]

StemLeafPlot[Floor[Data, 10], IncludeEmptyStems → True]

Stem Leaves
0 000000011111222222222223333444445555566666777777888899999
1 00011111223344444455555678899
2 223669
3 012456
4
5 2
6 8

Stem units: 100
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Box-and-Whisker Plots (Boxplots)
A boxplot is a representation of data that is useful for checking for
symmetry or skew and, in general, deviation of the data from that
expected of a normal distribution. Boxplots were also introduced by Tukey
in his 1977 book.
This is their general appearance:

●
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Construction of Boxplots
A boxplot is drawn on an abscissa scale of values corresponding to the
data. Often, the abscissa scale is not shown.
The central box has a center line, located at the median q2, while the left
and right sides of the box are located at the first and third quartiles q1 and
q3, respectively.
We define the inner fences f1 and f2 using the interquartile range as
follows:

f1 = q1 −
3

2
IQR; f3 = q3 +

3

2
IQR :

The “whiskers” (lines extending to the left and right of the box) end at the
adjacent values

a1 = min{xk : xk ≥ f1}; a3 = max{xk : xk ≤ f3}:
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Construction of Boxplots
We define the outer fences

F1 = q1 − 3 IQR; F3 = q3 + 3 IQR :

Measurements xk that lie outside the inner fences but inside the outer
fences are called near outliers. Those outside the outer fences are known
as far outliers.
A boxplot generated from the example data of Slide 292 is shown below:

●●● ○○

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

q1 q2 q3 near far
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Interpreting Boxplots
If data is obtained from a normal distribution, one would expect to see
I a symmetric median line in the middle of the box;
I equally long whiskers;
I very few near outliers and no far outliers.

A rule of thumb states that:
Of 1000 random samples of a normally distributed popula-
tion, it can be expected that 7 will be outliers.
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Near and Far Outliers
Data points lying between the inner and outer fences are called near
outliers, those lying outside the outer fences are called far outliers.
Far outliers are unusual if (and only if!) an approximately bell-shaped
distribution of the random variable X of the population is expected. In this
case, their origin should be investigated.
I If the outlier seems to be the result of an error in measurement or

data collecting, it may be discarded from the data.
I If the outlier seems to be the result of a random measurement, it is

recommended that statistics are reported twice: with the outlier
included and without the outlier.
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Danger of Omitting Data
As an example of the dangers of discarding “outliers”, consider the
following case: a tam of researchers from TU Delft and Microsoft claimed
the discovery of so-called “Majorana particles” in 2018 and published their
results in Nature. In 2021, a retraction was issued:

[T]he data in two of the figures [...] had been unnecessarily
corrected for charge jumps (corrections that were not men-
tioned explicitly in the paper) [...] When the data are replot-
ted over the full parameter range, including ranges that were
not made available earlier, points are outside the 2-sigma er-
ror bars. We can therefore no longer claim the observation of
a quantized Majorana conductance, and wish to retract this
Letter.

Literature: Simonite, T. Microsoft-Led Team Retracts Disputed Quantum-Computing
Paper, WIRED Magazine, March 8, 2020,
https://www.wired.com/story/microsoft-retracts-disputed-quantum-computing-paper/

https://www.wired.com/story/microsoft-retracts-disputed-quantum-computing-paper/
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14. Parameter Estimation
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Statistics and Estimation
A random variable that is derived from a random sample X1; : : : ; Xn of a
population is said to be statistic. Examples include
I any of the sample quartiles q1, q2, q3,
I the sample maximum max{X1; : : : ; Xn},
I the sample mean

X =
1

n

nX
i=1

Xi :

We would like to use a given sample statistic to estimate a population
parameter.
For example, the sample mean X can be used to estimate the population
mean —.
Any statistic that is used in such way is then called an estimator and the
value of the statistic a point estimate.
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Bias and Mean Square Error
We would like an estimator to have the following properties:
I The expected value of b„ should be equal to „,
I b„ should have small variance for large sample sizes.

This motivates the following definition:
14.1. Definition. The difference

„ − E[b„]
is called the bias of an estimator b„ for a population parameter „. If
E[b„] = „, we say that b„ is unbiased.
The mean square error of b„ is defined as

MSE[b„] := E[(b„ − „)2]:
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Quality of Estimators
The mean square error measures the overall quality of an estimator. We
can write

MSE[b„] = E[(b„ − E[b„])2] + `„ − E[b„]´2
= Var[b„] + (bias)2:

Hence variance can be just as important as bias for an estimator. In
general, unbiased estimators are preferred but sometimes biased estimators
are used.
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Simulation of 10 Estimates of „

θ

Unbiased, small variance

θ

Unbiased, large variance

θ

Biased, small variance

θ

Biased, large variance
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Sample Mean
14.2. Theorem. Let X1; : : : ; Xn be a random sample of size n from a
distribution with mean —. The sample mean X is an unbiased estimator for
—.

Proof.
We simply insert the definition of the sample mean and use the properties
of the expectation:

E[X] = E[(X1 + · · ·+ Xn)=n] =
1

n
E[X1 + · · ·+ Xn]

=
1

n
(E[X1] + · · ·+ E[Xn]) =

n—

n
= —:

14.3. Theorem. Let X be the sample mean of a random sample of size n
from a distribution with mean — and variance ff2. Then

Var[X] = E[(X − —)2] =
ff2

n
:
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Sample Variance
Proof.
We simply insert the definition of the sample mean and use the properties
of the variance:

Var[X] = Var[(X1 + · · ·+ Xn)=n] =
1

n2
Var[X1 + · · ·+ Xn]

=
1

n2
`
Var[X1] + · · ·+ Var[Xn]

´
=

nff2

n2
=

ff2

n
:

Thus X is both unbiased and has a variance that decreases with large n; it
is a “nice” estimator, since we can make the mean square error MSE[X] as
small as desired by taking n large enough.

14.4. Definition. The standard deviation of X is given by
q
Var[X] = ff=

√
n

and is called the standard error of the mean.
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Medieval Standard Units of Measurement

Determination of the rood and the foot in Frankfurt, in J. Köbel, Geometrei. Von künstlichem Feldmessen und Absehen, published in Frankfurt, 1570.
Image via Wikimedia, http://commons.wikimedia.org/wiki/File:Determination of the rute and the feet in Frankfurt.png

http://commons.wikimedia.org/wiki/File:Determination_of_the_rute_and_the_feet_in_Frankfurt.png
http://commons.wikimedia.org/wiki/File:Determination_of_the_rute_and_the_feet_in_Frankfurt.png
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Medieval Standard Units of Measurement
The picture on the previous slide is taken from the book “Geometrei. Von
künstlichem Feldmessen und Absehen”, published in Frankfurt at the
beginning of the 16th century. An edition from 1570 is available online at
http://books.google.de/books?id=80JSAAAAcAAJ&pg=PA1.
The book describes the recommended method for obtaining a
measurement of “1 foot” (although it doesn’t actually use the term):

Sixteen men, small and large, as they freely leave the church one
after the other, are each to put in front of the other a shoe. This
same length is and shall be a right and proper measuring rood.
[…] Using a compass, this same measured rood is to be divided
and distinguished into sixteen equal parts and shall forthwith be
accepted and recognized as a right measuring rood for use in the
field.

http://books.google.de/books?id=80JSAAAAcAAJ&pg=PA1
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The Method of Moments
General problem: How to find an estimator for a parameter of a
distribution?

The method of moments was developed by Chebyshev and Pearson
towards the end of the 19th century.
It is based on the fact that, given a random sample X1; : : : ; Xn of a
random variable X, for any integer k ≥ 1,

\E[Xk ] =
1

n

nX
i=1

Xk
i

is an unbiased estimator for the kth moment of X. (The proof is
completely the same as for the sample mean.)
In other words, we have good estimators for the moments of a random
variable.
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The Method of Moments
The idea is now to express a parameter in terms of moments and then
simply insert the estimators for these moments to obtain an estimator for
the parameter.
Advantage: This is a simple method to obtain a basic estimator for a
parameter.
Disadvantage: The estimators may not be unbiased and may yield
non-sensical results in some cases.
For example, the variance of a random variable is Var[X] = E[X2]− E[X]2,
so we can set

cff2 = \E[X2]− dE[X]
2
=

1

n

nX
i=1

X2
i − X

2

=
1

n

nX
k=1

(Xk − X)2
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Estimator for the Variance
However, this estimator is not unbiased:

E

» nX
k=1

(Xk − X)2
–

= E

» nX
k=1

(Xk − —+ —− X)2
–

= E

» nX
k=1

(Xk − —)2 − 2(X − —)
nX

k=1

(Xk − —) + n(—− X)2
–

= E

» nX
k=1

(Xk − —)2 − 2(X − —)
““ nX

k=1

Xk

”
− n—

”
+ n(—− X)2

–

= E

» nX
k=1

(Xk − —)2 − 2(X − —)(nX − n—) + n(—− X)2
–
:
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Sample Variance
Simplifying, we have

E

» nX
k=1

(Xk − X)2
–
= E

» nX
k=1

(Xk − —)2 − n(X − —)2
–

=

„ nX
k=1

E
ˆ
(Xk − —)2

˜
− n E

ˆ
(X − —)2

˜«
:

We now use that

E[(Xk − —)2] = Var[Xk ] = ff2;

E
ˆ
(X − —)2

˜
= Var[X] = ff2=n:
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Sample Variance
Then

E

» nX
k=1

(Xk − X)2
–
=

„ nX
k=1

ff2 − n
ff2

n

«
= (n − 1)ff2:

It follows that the estimator cff2 obtained by the method of moments is
biased:

E

»
1

n

nX
k=1

(Xk − X)2
–
=

n − 1

n
ff2;

therefore this estimator would tend to underestimate the true variance.
Instead, we will work with the unbiased sample variance

S2 :=
1

n − 1

nX
k=1

(Xk − X)2:
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Method of Maximum Likelihood
Fisher developed the following approach to finding estimators. Initial ideas
go back to Gauß who used similar approaches on certyain problems.
Given a set of observations x1; : : : xn from a random variable X, with
parameter „ one finds the value of „ most likely to have produced these
observations. This value becomes the estimate b„.
In other words, we express the probability of obtaining x1; : : : xn as a
function of the parameter „ and then determine the value of „ that
maximizes this probability.
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Method of Maximum Likelihood
Let X„ be a random variable with parameter „ and density fX„ . Given a
random sample (X1; : : : ; Xn) that yielded values (x1; : : : ; xn) we define the
likelihood function L by

L(„) =
nY

i=1

fX„(xi ):

If X„ is a discrete random variable, then L(„) is just the probability of
obtaining the observed measurements:

P [X1 = x1 and : : : and Xn = xn] =
nY

i=1

P [Xi = xi ] =
nY

i=1

fX„(xi )

If X„ is continuous, it represents the probability density.
We then maximize L(„). The location of the maximum is then chosen to
be the estimator b„.
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Estimating the Poisson Parameter
14.5. Example. Suppose it is known that X follows a Poisson distribution
with parameter k and we wish to estimate k.
The density for X is given by fk(x) =

e−kkx

x! , x ∈ N. Given a random
sample X1; : : : ; Xn the likelihood function is

L(k) =
nY

i=1

fk(xi ) = e−nk k
P

xiQ
xi !

:

To simplify our calculations, we take the logarithm:

lnL(k) = −nk + ln k
nX

i=1

xi − ln
Y

xi !:

Maximizing lnL(k) will also maximize L(k).
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Estimating the Poisson Parameter
We take the first derivative and set it equal to zero:

d lnL(k)

dk
= −n +

1

k

nX
i=1

xi = 0

so we find bk = x:

This is not unexpected, since — = k for the Poisson distribution and X is a
good estimator for —. In this case the maximum-likelihood estimator
coincides with the method-of-moments estimator.
This method can be generalized to finding estimators for multiple
parameters. In that case, the maximum of L(„1; : : : ; „j) is found with
respect to all j variables.



Parameter Estimation Slide 335

Estimators with Mathematica
Both the method of moments and the method of maximum likelihood (as
well as other methods) are available. Using the data from the previous
section,

maxlike = FindDistributionParameters[Data,

ExponentialDistribution[β],

ParameterEstimator -> "MaximumLikelihood"]

{β → 0.0087382}

mom = FindDistributionParameters[Data,

ExponentialDistribution[β],

ParameterEstimator -> "MethodOfMoments"]

{β → 0.0087382}



Parameter Estimation Slide 336

Estimators with Mathematica
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15. Interval Estimation
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Distribution of the Sample Mean
Wanted: More precise information on estimated parameters.
Our goal now is to gain more precise information on the value of an
estimated parameter. What we have obtained so far are point estimates,
but we do not yet know how close such an estimate is to the actual value
of the parameter.
Needed: the distribution of the sample statistic.
As a first example, let us consider the sample mean:
15.1. Theorem. Let X1; : : : ; Xn be a random sample of size n from a
normal distribution with mean — and variance ff2.
Then X is normally distributed with mean — and variance ff2=n.

15.2. Remark. Even if the sample is taken from a non-normal distribution,
if n is “sufficiently large”, then the distribution of X will be close to normal
due to the Central Limit Theorem 7.13.
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Interval Estimation
15.3. Notation. We will often denote an interval of the form [x − "; x + "]
for x ∈ R, " > 0 by x ± ". In fact, we define

y = x ± " to mean y ∈ [x − "; x + "]:

We would like to make statements such as “based on the results of a
sample, we are 90% certain that the mean of a population lies in X ± L.”
Unfortunately, this precise statement is impossible! There is a subtle
point involved (which is often glossed over in textbooks) that will be
explored in an online module.
The following technique is known as interval estimation and the resulting
interval is called a confidence interval.
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Two-Sided Confidence Intervals
15.4. Definition. Let 0 ≤ ¸ ≤ 1. A 100(1− ¸)% (two-sided) confidence
interval for a parameter „ is an interval [L1; L2] such that

P [L1 ≤ „ ≤ L2] = 1− ¸: (15.1)

15.5. Remark. The equation (15.1) does not determine L1 and L2 uniquely;
we will nearly always require centered confidence intervals with

P [„ < L1] = P [„ > L2] = ¸=2:

If the distribution of b„ is symmetric about „, then

L1 = b„ − L; L2 = b„ + L;

where L is a sample statistic and the interval is centered on „̂, the point
estimate for „.
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Random Intervals
15.6. Remark. It is important to note that in (15.1), the population
parameter „„„ is not random, but that L1L1L1 and L2L2L2 are random. Hence, we
may say that [L1; L2] is a random interval.

θ

Given „, a random sample has a probability of 1− ¸ of yielding sample
statistics L1 and L2 such that „ ∈ [L1; L2].
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Interval Estimation for the Mean (Variance Known)
Suppose that we have a random sample of size n from a normal population
with unknown mean — and known variance ff2.
A sample yields a point estimate X for —. We want to find L = L(¸) such
that we can state with 100(1− ¸)% confidence that — = X ± L.
In particular, we would like to find a number L so that

P [X − L ≤ — ≤ X + L] = 1− ¸:

Note again that — is not random, but rather a fixed but unknown
parameter. However, the sample statistic X is random and so is L.
It is crucial that we know the distribution of X.
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The Point z¸=2
Given ¸ ∈ [0; 1] we define z¸=2 ∈ [0;∞) by

¸=2 = P [Z ≥ z¸=2] =
1√
2ı

Z ∞

z¸=2

e−x2=2 dx: (15.2)

zα/2-zα/2
z

fZ

α / 2α / 2
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Interval Estimation for the Mean (Variance Known)
Fix ¸ ∈ [0; 1]. Then

1− ¸ = P [X − L ≤ — ≤ X + L] = P

"
X − —− L

ff=
√
n
≤ 0 ≤ X − —+ L

ff=
√
n

#
By Theorem 15.1 the sample mean is normally distributed with mean —
and variance ff2=n. Thus,

Z =
X − —

ff=
√
n

follows a standard normal distribution, and so

1− ¸ = P

»
Z − L

ff=
√
n
≤ 0 ≤ Z +

L

ff=
√
n

–
= P

»
− L

ff=
√
n
≤ Z ≤ L

ff=
√
n

–
= 2P

»
0 ≤ Z ≤ L

ff=
√
n

–
= 1− 2P

»
L

ff=
√
n
≤ Z <∞

–
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Confidence Interval for the Mean (Variance Known)
In this way we determine L as being the number such that

P

»
L

ff=
√
n
≤ Z <∞

–
= ¸=2:

This is equivalent to writing
L

ff=
√
n
= z¸=2 or L =

z¸=2 · ff√
n

:

We have proved the following result:
15.7. Theorem. Let X1; : : : ; Xn be a random sample of size n from a
normal distribution with mean — and variance ff2. A 100(1− ¸)%
confidence interval on — is given by

X ±
z¸=2 · ff√

n
:
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Confidence Interval for the Mean (Variance Known)
15.8. Example. An article in the Journal of Heat Transfer describes a
method of measuring the thermal conductivity of Armco iron. Using a
temperature of 100◦ F and a power input of 550W, the following 10
measurements of thermal conductivity (in Btu =(hr ft ◦ F)) were obtained:

41.60 41.48 42.34 41.95 41.86
42.18 41.72 42.26 41.81 42.04

A point estimate of the mean thermal conductivity at 100◦ F and 550W is
the sample mean,

x = 41:92Btu =(hr ft ◦ F):
Suppose we know that the standard deviation of the thermal conductivity
under the given conditions is ff = 0:10Btu =(hr ft ◦ F). A 95% confidence
interval (¸ = 0:05) on the mean is then given by

x ± z0:025 · ff√
n

= 41:924± 1:96 · 0:1√
10

= [41:862; 41:986]:
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One-Sided Confidence Intervals
15.9. Definition. Let 0 ≤ ¸ ≤ 1. A 100(1−¸)% upper confidence bound
for „ is a number L such that

P [„ ≤ L] = 1− ¸:

A 100(1− ¸)% lower confidence bound for „ is a number L such that

P [L ≤ „] = 1− ¸:

The corresponding intervals are called one-sided confidence intervals.

15.10. Theorem. Let X1; : : : ; Xn be a random sample of size n from a
normal distribution with mean — and variance ff2.

(i) A 100(1− ¸)% upper confidence bound on — is given by X +
z¸ · ff√

n
:

(ii) A 100(1− ¸)% lower confidence bound on — is given by X − z¸ · ff√
n

:
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Interval Estimation
Mathematica has built-in functionality for two-sided confidence intervals:

Needs@"HypothesisTesting`"D

data := 841.60, 41.48, 42.34, 41.95, 41.86,
42.18, 41.72, 42.26, 41.81, 42.04<

Mean@dataD

41.924

MeanCI@data, KnownVariance ® 0.01, ConfidenceLevel ® 0.95D

841.862, 41.986<

The value for z¸=2 may be found by inverting the cumulative distribution
function. For instance, for ¸ = 0:05,

InverseCDF@NormalDistribution@0, 1D, 0.975D

1.95996

This is useful for finding one-sided confidence intervals.
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Joint Sampling of Mean and Variance
Our interest in the chi-squared distribution is not merely abstract, for
understanding the sum of squares of normally distributed random variables;
in fact, the main application lies in analyzing the distribution of the sample
variance. In the previous chapter, we were able to analyze the sample
mean, and also its distribution, under the assumption of known variance.
If the variance

ff2 = E[(X − —)2]

is unknown, we must start all over again, and first learn more about the
sample variance

S2 =
1

n − 1

nX
k=1

(Xk − X)2:

The problem essentially is that we are using the random sample X1; : : : ; Xn

to obtain X and S2 at the same time, i.e., we actually need to obtain the
joint distribution of X and S2.
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Joint Distribution of Sample Mean and Variance
The following theorem and the chi-squared distribu-
tion were discovered by Helmert in 1876 in the con-
text of statistics of geodesical measurements. It was
published in German textbooks.
However, his results were unknown to English statis-
ticians and the chi-squared distribution was re-
discovered by Pearson in 1900. Fisher and Gosset
(see below) then found its application to statistics.

Friedrich Robert Helmert (1843-1917).
File:F-R Helmert 1.jpg. (2016, January 27).
Wikimedia Commons, the free media repository.

15.11. Theorem. Let X1; : : : ; Xn, n ≥ 2, be a random sample of size n
from a normal distribution with mean — and variance ff2. Then

(i) The sample mean X is independent of the sample variance S2,
(ii) X is normally distributed with mean — and variance ff2=n,
(iii) (n− 1)S2=ff2 is chi-squared distributed with n− 1 degrees of freedom.

https://commons.wikimedia.org/w/index.php?title=File:F-R_Helmert_1.jpg&oldid=185816946
https://commons.wikimedia.org/w/index.php?title=File:F-R_Helmert_1.jpg&oldid=185816946
https://commons.wikimedia.org/w/index.php?title=File:F-R_Helmert_1.jpg&oldid=185816946
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The Helmert Transformation
The Helmert transformation is a very special kind of linear, orthogonal
map from a set of n ≥ 2 i.i.d. normal random variables X1; : : : ; Xn to a
new set of random variables Y1; : : : ; Yn.
A sample of size n taken from a normal population X with mean — and
variance ff2 is transformed as follows:

Y1 =
1√
n
(X1 + · · ·+ Xn)

Y2 =
1√
2
(X1 − X2)

Y3 =
1√
6

`
X1 + X2 − 2X3

´
...

Yn =
1p

n(n − 1)

`
X1 + X2 + · · ·+ Xn−1 − (n − 1)Xn

´
(15.3)
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The Helmert Transformation
In matrix notation,

0BBBBBB@
Y1
Y2
Y3
...
Yn

1CCCCCCA =

0BBBBBBBB@

1√
n

1√
n

1√
n

· · · 1√
n

1√
2

− 1√
2

0 · · · 0
1√
6

1√
6

− 2√
6

· · · 0
... ... ... . . . ...
1√

n(n−1)

1√
n(n−1)

1√
n(n−1)

· · · − n−1√
n(n−1)

1CCCCCCCCA

0BBBBBB@
X1

X2

X3
...
Xn

1CCCCCCA
or Y = AX for short. It is easy to see that the rows of the matrix A are
orthonormal. Thus, A is an orthogonal matrix, A−1 = AT . This
immediately implies |detA| = 1, since

detA = detAT = detA−1 =
1

detA
⇒ (detA)2 = 1
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The Helmert Transformation
Incidentally, the orthogonality of A also implies that if y = Ax , then

nX
i=1

y2i = ⟨y ; y⟩ = ⟨Ax ; Ax⟩ = ⟨ATAx ; x⟩ = ⟨x ; x⟩ =
nX

i=1

x2i : (15.4)

We have assumed that the random variables X1; : : : ; Xn are i.i.d., so their
joint distribution function is given by the product of the individual normal
distributions,

fX1···Xn(x1; : : : ; xn) =
nY

i=1

(2ı)−1=2ff−1e−
1

2ff2
(xi−—)2

= (2ı)−n=2ff−ne
− 1

2ff2

nP
i=1

(x2i −2—xi+—2)

= (2ı)−n=2ff−ne
− 1

2ff2

„
nP

i=1

x2i −2—
nP

i=1

xi+n—2

«
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The Helmert Transformation
The Helmert transformation is linear, so its derivative (Jacobian) DA is
simply A. Using (15.4), |detA−1| = 1 and Theorem 11.1 on the
transformation of joint random variables, we obtain

fY1···Yn(y1; : : : ; yn)

= fY1···Yn(y) = fX1···Xn(x)x=A−1y · |detDA−1(y)|| {z }
=1

= (2ı)−n=2ff−ne
− 1

2ff2

“ nP
i=1

y2
i −2—

√
ny1+n—2

”

= (2ı)−n=2ff−ne
− 1

2ff2

“ nP
i=2

y2
i +(y1−

√
n—)2

”

= (2ı)−1=2ff−1e−
1

2ff2
(y1−

√
n—)2

nY
i=2

(2ı)−1=2ff−1e−
1

2ff2
y2
i
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The Helmert Transformation
We see that the marginal densities are given by

fY1(y1) = (2ı)−1=2ff−1e−
1

2ff2
(y1−

√
n—)2 ;

fYi (yi ) = (2ı)−1=2ff−1e−
1

2ff2
y2
i ; i = 2; : : : ; n

and the joint density is the product of the marginal densities,

fY1···Yn(y1; : : : ; yn) = fY1(y1) · fY2(y2) : : : fYn(yn):

In particular, the random variables Y1; : : : ; Yn are independent and
normally distributed.
The random variable Y1 is normally distributed with mean √n— and
variance ff2, while Y2; : : : ; Yn have mean 0 and variance ff2.
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The Helmert Transformation
Proof of Theorem 15.11.
Using the Helmert transformation, we may write

X =
1√
n
Y1:

Furthermore,

(n − 1)S2 =
nX

i=1

(Xi − X)2 =
nX

i=1

X2
i − nX

2
=

nX
i=1

Y 2
i − Y 2

1

=
nX

i=2

Y 2
i :

Since the Yi are all independent, it follows that X is independent of S2, so
we have proven the first sassertion of the theorem.
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The Helmert Transformation
Proof of Theorem 15.11 (continued).

Since X = 1√
n
Y1 and fY1(y1) = (2ı)−1=2ff−1e−

(y1−
√
n—)2

2ff2 , it follows from
Theorem 7.5 that

fX(x) = (2ı)−1=2ff−1e−
(
√
nx−

√
n—)2

2ff2
√
n

so X is normally distributed with mean — and variance ff2=n.
Now

(n − 1)S2=ff2 =
1

ff2

nX
i=2

Y 2
i =

nX
i=2

„
Yi
ff

«2

is the sum of n − 1 squares of standard normal distributions Yi=ff, so it
follows a chi-squared distribution with n − 1 degrees of freedom.
This completes the proof.
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Independence of Sample Mean and Sample Variance
15.12. Remark. Theorem 15.11 essentially uses the fact that the i.i.d.
variables Xk , k = 1; : : : ; n, are normally distributed. In fact, the converse
result is true also:

Let X1; : : : ; Xn, n ≥ 2, be i.i.d. random variables. Then if X and
S2 are independent, the Xk , k = 1; : : : ; n follow a normal
distribution.

This means that the independence of X and S2 is a characteristic
property of the normal distribution. Furthermore, if in a given situation we
assume that X and S2 are independently distributed we are essentially
assuming that the population is normally distributed.

We can use Theorem 15.11 to find a confidence interval for the variance
based on the sample variance S2.
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The Points ffl2
1−¸=2;‚ and ffl2

¸=2;‚

Given ¸ ∈ [0; 1] and ‚ > 0 we define ffl2
1−¸=2;‚ ; ffl

2
¸=2;‚ ∈ [0;∞) byZ ffl2

1−¸=2;‚

0
fffl2

‚
(x) dx =

Z ∞

ffl2
¸=2;‚

fffl2
‚
(x) dx = ¸=2;

χ1-α/2,γ
2 χα/2,γ

2
x

fχ2

α / 2 α / 2
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Interval Estimation of Variability
From Theorem 15.11 we know that given a sample of size n from a normal
population, (n − 1)S2=ff2 follows a chi-squared distribution with n − 1
degrees of freedom. Thus

1− ¸ = P

"
ffl2
1−¸=2;n−1 ≤

(n − 1)S2

ff2
≤ ffl2

¸=2;n−1

#

= P

"
(n − 1)S2

ffl2
¸=2;n−1

≤ ff2 ≤ (n − 1)S2

ffl2
1−¸=2;n−1

#

This gives us the following result:
15.13. Theorem. Let X1; : : : ; Xn, n ≥ 2, be a random sample of size n from
a normal distribution with mean — and variance ff2. A 100(1− ¸)%
confidence interval on ff2 is given byˆ

(n − 1)S2=ffl2
¸=2;n−1; (n − 1)S2=ffl2

1−¸=2;n−1

˜
:
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Interval Estimation of Variability
Often, we are only interested in finding an upper or lower bound for the
variance.
15.14. Theorem. Let X1; : : : ; Xn, n ≥ 2, be a random sample of size n from
a normal distribution with mean — and variance ff2. Then with
100(1− ¸)% confidence,

ff2 ≤ (n − 1)S2

ffl2
1−¸;n−1

and [0; (n−1)S2

ffl2
1−¸;n−1

] is a 100(1− ¸)% upper confidence interval for ff2.

Similarly, with 100(1− ¸)% confidence
(n − 1)S2

ffl2
¸;n−1

≤ ff2:

and [ (n−1)S2

ffl2
¸;n−1

;∞) is a 100(1− ¸)% lower confidence interval for ff2.
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Interval Estimation of Variability
15.15. Example. A manufacturer of soft drink beverages is interested in the
uniformity of the machine used to fill cans. Specifically, it is desirable that
the standard deviation ff of the filling process be less than 0.2 fluid ounces;
otherwise there will be a higher than allowable percentage of cans that are
underfilled. We will assume that fill volume is approximately normally
distributed. A random sample of 20 cans results in a sample variance of
s2 = 0:0225 (fluid ounces)2. A 95% upper-confidence interval is given by

ff2 ≤ (n − 1)S2

ffl2
0:95;n−1

=
19 · 0:0225 (fluid ounces)2

10:117
= 0:0423 (fluid ounces)2

This corresponds to ff ≤ 0:21 fluid ounces with 95% confidence. This is
not sufficient to support the hypothesis that ff ≤ 0:20 fluid ounces so
further investigation is necessary.
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Interval Estimation of Variability
Mathematica has built-in functionality for two-sided confidence intervals
for the variance:

data := 841.60, 41.48, 42.34, 41.95, 41.86,
42.18, 41.72, 42.26, 41.81, 42.04<

VarianceCI@data, ConfidenceLevel -> .95D

80.0381879, 0.269013<

However, one-sided intervals need to be calculated by hand, using, for
example,

InverseCDF@ChiSquareDistribution@19D, 0.05D

10.117



Interval Estimation Slide 365

Interval Estimation for the Mean (Variance unknown)
Recall that we have derived a formula for the confidence interval of the
mean of a normal distribution using the random variable

Z =
X − —

ff=
√
n

which was found to be normally distributed. The Central Limit Theorem
allowed us to extend this result (approximately) even to non-normal
distributions, but one central difficulty remained: ff must be known!
Our main goal is to derive a general formula for a confidence interval on
the mean when he value of ff is not known and must be estimated.
The difficulty lies in the fact that the distribution of

X − —

S=
√
n

is not known.
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The Student T -distribution
Gosset was a statistician and brewer who worked fur
the Guinness company in Dublin. He was interested
in developing new varieties of barley and became a
pioneer of many important statistical methods.
To prevent the leaking of trade secrets, Guinness
prohibited their staff from publishing findings that
mentioned beer, “Guinness” or the author’s name.
Therefore, Gosset published his results under the
pseudonym “A. Student.”

William Sealy Gosset (1876-1937) in 1908.
File:William Sealy Gosset.jpg. (2017, April 26).
Wikimedia Commons, the free media repository.

15.16. Definition. Let Z be a standard normal variable and let ffl2
‚ be an

independent chi-squared random variable with ‚ degrees of freedom. The
random variable

T‚ =
Zq
ffl2
‚=‚

is said to follow a T -distribution with ‚ degrees of freedom.

https://commons.wikimedia.org/w/index.php?title=File:William_Sealy_Gosset.jpg&oldid=242171466
https://commons.wikimedia.org/w/index.php?title=File:William_Sealy_Gosset.jpg&oldid=242171466
https://commons.wikimedia.org/w/index.php?title=File:William_Sealy_Gosset.jpg&oldid=242171466
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Density of the T -distribution
15.17. Theorem. The density of a T distribution with ‚ degrees of freedom
is given by

fT‚ (t) =
` ((‚ + 1)=2)

` (‚=2)
√
ı‚

 
1 +

t2

‚

!− ‚+1
2

:

Proof.
The distribution of ffl‚ was found in (11.1) to be

fffl‚ (y) =

8<:
2

2‚=2` (‚=2)
y‚−1e−y2=2 y ≥ 0;

0 y < 0:

It follows from Theorem 7.5 that
q
ffl2
‚=‚ = ffl‚=

√
‚ has distribution

fffl‚=
√
‚(y) =

8<:
2
√
‚

2‚=2` (‚=2)
(
√
‚y)‚−1e−‚y2=2 y ≥ 0;

0 y < 0:
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Density of the T -distribution
Proof (continued).
The density of the standard normal random variable Z is given by

fZ(z) =
1√
2ı

e−z2=2:

By Theorem 11.2, the density fT of the quotient T = X=Y of two
independent random variables X and Y is given by

fT (t) =

Z ∞

−∞
fX(ty)fY (y) · |y | dy:

For T‚ = Z=(ffl‚=
√
‚) it follows that

fT‚ (t) =
1√
2ı

2
√
‚

2‚=2` (‚=2)

Z ∞

0
e−(t2+‚)y2=2(

√
‚y)‚−1y dy:
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Density of the T -distribution
Proof (continued).
Substituting y =

q
2z=(t2 + ‚), z = (t2 + ‚)y2=2, dz = (t2 + ‚)y dy , we

obtain

fT‚ (t) =
1√
2ı

2
√
‚

2‚=2` (‚=2)
(t2 + ‚)−1

Z ∞

0
e−z

„
2z‚

t2 + ‚

« ‚−1
2

dz

=
1
√
‚ı

1

` (‚=2)

„
‚

t2 + ‚

« ‚+1
2
Z ∞

0
e−zz

‚+1
2

−1 dz

=
1
√
‚ı

` ((‚ + 1)=2)

` (‚=2)

 
1 +

t2

‚

!− ‚+1
2

:
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T -distribution of the Sample Mean
15.18. Theorem. Let X1; : : : ; Xn be a random sample from a normal
distribution with mean — and variance ff2. The random variable

Tn−1 =
X − —

S=
√
n

follows a T distribution with n − 1 degrees of freedom.

Proof.
We know that (X − —)=(ff=

√
n) is standard normal and (n − 1)S2=ff2 is a

chi-squared random variable with n − 1 degrees of freedom. Therefore,

Zq
ffl2
‚=‚

=
(X − —)=(ff=

√
n)q

((n − 1)S2=ff2)=(n − 1)
=

X − —

S=
√
n

follows a T distribution with n − 1 degrees of freedom.
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Confidence Interval for the Mean (Variance Unknown)
Let 0 < ¸ ≤ 1 and ‚ > 0. We define t¸=2;‚ ≥ 0 by

Z ∞

t¸=2;‚

fT‚ (t) dt = ¸=2; (15.5)

where fT‚ is the density of the T -
distribution with n degrees of free-
dom.

tα/2,γ-tα/2,γ
t

fTγ

α / 2α / 2

15.19. Theorem. Let X1; : : : ; Xn be a random sample of size n from a
normal distribution with mean — and variance ff2. Then a 100(1− ¸)%
confidence interval on — is given by

X ± t¸=2;n−1S=
√
n
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Confidence Interval for the Mean (Variance Unknown)
15.20. Example. An article in the Journal of Testing and Evaluation
presents the following 20 measurements on residual flame time (in seconds)
of treated specimens of children’s nightwear:

9.85 9.93 9.75 9.77 9.67 9.87 9.67 9.94 9.85 9.75
9.83 9.92 9.74 9.99 9.88 9.95 9.95 9.93 9.92 9.89

We wish to find a 95% confidence interval on the mean residual flame
time. The sample mean and standard deviation are

x = 9:8525; s = 0:0965

We refer to the table for the T distribution with 20− 1 = 19 degrees of
freedom and and ¸=2 = 0:025 to obtain t0:025;19 = 2:093. Hence we are
95% certain that

— = (9:8525± 0:0451) sec :
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16. The Fisher Test
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Hypotheses and Testing
In this section we will discuss the second major statistical method for
gaining information on a probability distribution: hypothesis testing. The
goal is to reject or fail to reject statements (hypotheses) based on
statistical data.
We will present three approaches:

(i) Fisher’s null hypothesis testing,
(ii) Neyman–Pearson decision theory,
(iii) The amalgam of (i) and (ii) that is still used and sometimes taught

today, called Null Hypothesis Significance Testing.

In our initial discussion, a hypothesis will be a statement about a
population parameter, denoted „„„.
The hypothesis will compare „ to a null value, denoted „0„0„0.
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Fisher’s Null Hypothesis Test
We consider a single hypothesis that compares a population parameter „ to
a given null value „0.
This hypothesis will be denoted by H0H0H0 and is called the null hypothesis.
Our goal is to find statistical evidence that allows us to reject the null
hypothesis.
The process of using statistical data to decide whether or not a hypothesis
should be rejected is called “performing a hypothesis test”.
Null hypotheses take one of three forms:

I H0 : „ = „0

I H0 : „ ≤ „0

I H0 : „ ≥ „0
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Fisher’s Null Hypothesis Test
16.1. Example. We want to find evidence that a new car design has a mean
mileage greater than 26 mpg. Therefore, we set up the null hypothesis

H0 : — ≤ 26: (16.1)

Our goal is to gather data that allows us to reject H0H0H0.

16.2. Remark. A hypothesis test is based on rejecting a hypothesis because
it is possible to gather statistical evidence that a certain claim is likely to
be false, while it is impossible for statistical evidence to directly prove that
a claim is true. This will become more clear soon.

Suppose that the hypothesis (16.1) is given. We then take a random
sample and calculate X. If the value of X is much greater than 26, there is
reason to believe that H0 is false.
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The P -Value for a One-Tailed Test
The test of a hypothesis of the form

H0 : „ ≤ „0 or H0 : „ ≥ „0

is said to be a one-tailed test.
In our current example (16.1) we take a random sample of size n and find
the value x for the sample mean. We then find the probability of obtaining
the measured value of x or a larger result if „ = „0. This is said to be the
significance or P-value of the test.
Note that finding the probability that we obtain x or a greater result if
— = 26 is an upper bound on the probability given — ≤ 26:

P [X ≥ x | — ≤ 26] ≤ P [X ≥ x | — = 26]
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The P -Value for a One-Tailed Test
This is illustrated in the sketch below. The sample mean X follows a
normal distribution with mean —. If — = —0, the probability of obtaining a
value of X at least equal to the measured x is indicated by the shaded
region.

μ0 X
x

fX

P - value

H0 : — ≤ —0
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The P -Value for a One-Tailed Test
If — < —0, the probability will be smaller, since the density curve will be
shifted to the left.

μ μ0 X
x

fX

upper bound

actual

H0 : — ≤ —0
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The P -Value and Rejecting the Null Hypothesis
The P -value is therefore an upper bound of the probability of obtaining the
data if H0 is true. If D represents the statistical data,

P [D | H0] ≤ P -value

and we will reject H0 if this value is small.
We then say that we either

I fail to reject H0H0H0 or

I reject H0H0H0 at the [PPP -value] level of significance.

The P -value is also called the level of significance of the test.
The statistic on which the P -value is based is called the test statistic. In
our discussion so far, the test statistic has been the sample mean.
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A One-Tailed Test Based on the Normal Distribution
16.3. Example. Continuing from Example 16.1, we may assume that the
mileage of cars currently has a standard deviation of 5 miles per gallon and
that this will also be true for the new design. Furthermore, we suppose
that the gas mileage follows a normal distribution.
We take a sample of 36 cars and find their gas mileages. We decide to
base our rejection of H0 on the sample mean.
If — = 26 and ff = 5, the sample mean is normally distributed with — = 26
and standard deviation ff=

√
n = 5=6.

Suppose that we find a sample mean x = 28:04 mpg.
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A One-Tailed Test Based on the Normal Distribution
We now calculate the P -value of the test, i.e., the probability of obtaining
this or a larger value of the sample mean if H0 were true.

P [X ≥ 28:04 | — ≤ 26; ff = 5] ≤ P [X ≥ 28:04 | — = 26; ff = 5]

= P

"
X − 26

5=6
≥ 28:04− 26

5=6

#
= P [Z ≥ 2:45] = 1− P [Z ≤ 2:45]

= 1− 0:9929 = 0:0071:

This is the P -value of the test. Since it is very small, we decide to reject
the null hypothesis at the 0.7% level of significance.
We may say that there is evidence that the gas mileage of the cars of new
design is greater than 26 mpg.
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Two-Tailed Tests
If we are testing a hypothesis of the form

H0 : „ = „0

we say we are performing a two-tailed test. In this case, the P -value is
twice the value of a one-tailed test, since there is evidence that the null
hypothesis is false if the statistic differs from „0 significantly, regardless of
whether the statistic is greater or smaller.

μ0 X
x

fX

P - value

H0 : — = —0
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A Two-Tailed Test Based on the Normal Distribution
16.4. Example. The burning rate of a rocket propellant is being studied.
Specifications require that the mean burning rate must be 40 cm/s.
Furthermore, suppose that we know that the standard deviation of the
burning rate is approximately ff = 2 cm/s. The experimenter decides to
base the test on a random sample of size n = 25. The null hypothesis is

H0 : — = 40 cm/s

If H0 is true, the sample mean is normally distributed with mean
—0 = 40 cm/s and variance ff2=n; thus she will use the test statistic

Z =
X − —0

ff=
√
n

which is standard normal if H0 is true.
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The Z-Test
Twenty-five specimen are tested, and the sample mean burning rate
obtained is x = 41:25 cm/s. The value of the test statistic is

z =
x − —0

ff=
√
n

=
41:25− 40

2=
√
25

= 3:125:

Then

P [Z ≥ 3:125 | H0] = 1− P [Z ≤ 3:125 | H0] = 1− 0:9991 = 0:0009

Since this is a two-tailed test, the P -value is twice this number and she
decides to reject H0 at the 0.18% level of significance.
There is evidence that the burning rate is not 40 cm/s.
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Fisher’s Null Hypothesis Test
16.5. Remarks.
I Fisher originally recommended rejecting H0 if the P -value is less than

5%, i.e., P < 0:05. However, he later changed his mind and
advocated quoting the actual P -value and deciding whether or not to
reject H0 on a case-by-case basis.

I According to Fisher, this type of test should only be used if very little
is known about the parameter „. The hypothesis test is just a first
step in investigating „. Confidence intervals and other techniques give
far more information in practice.

I Fisher also observed that a single significant test should not be enough
to comprehensively reject H0. Only multiple, independent significant
test should be enough to allow the conclusion that H0 is actually false.
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Does a small P -value provide evidence that H0 is false?
But there is also a more fundamental issue: what a researcher wants is,
given data D, the probability that H0 is true, i.e.,

P [H0 | D]:

But the P -value is just the converse probability, i.e.,

P [D | H0]:

It is easy to write down Bayes’s theorem and see that

P [H0 | D] =
P [D | H0] · P [H0]

P [D | H0] · P [H0] + P [D | ¬H0] · P [¬H0]
:

Since P [¬H0] = 1− P [H0] we find that

P [H0 | D] =
P [D | H0] · P [H0]

P [D | H0] · P [H0] + P [D | ¬H0](1− P [H0])
:
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Is Hypothesis Testing logical?
Then if P [H0] ̸= 0 then

P [H0 | D] =
P [D | H0] · P [H0]

P [D | H0] · P [H0] + P [D | ¬H0](1− P [H0])

=
1

1 + P [D|¬H0]
P [D|H0]

1−P [H0]
P [H0]

This shows the following:
I If P [H0] is small, even a large P -value does not mean that H0 is likely

to be true.
I If P [H0] is large, even a small P -value does not mean that H0 is likely

to be false.
Hence, it is possible that we have data which is very unlikely given H0, but
that in fact H0 given the data is very likely (and vice-versa).
In short, classical hpyothesis testing does not take the probability of H0

being true in the first place into account.
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Bayesian vs. Frequentist Statistics
This problem has given rise to Bayesian statistics which attempts to
assign a prior probability to H0 and deduce a posterior probability based
on experimental results. However, finding this prior probability is often
tricky. There are, broadly speaking, two groups of statisticians:
I Frequentists, who mainly ignore the problems mentioned here or

claim that they are not relevant in their specific research (for example,
because they consider P [H0] to not be small in their experiments).

I Bayesians who claim to understand the logical inconsistencies and
intend to compensate for them via prior and posterior probability
distributions. While theoretically pure, this may be difficult to
implement in practice.

Of course, these are extreme characterizations. In practice, every
statistician knows Bayes’s theorem and will apply it as much as possible
and no statistician entirely rejects frequentist methods.
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Bayesian vs. Frequentist Statistics

xkcd: frequentists vs. bayesians, Randall Munroe, published on xkcd.com, September 11,
2012

http://xkcd.com/1132/
http://xkcd.com/1132/
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Bayesian vs. Frequentist Statistics

xkcd: frequentists vs. bayesians, Randall Munroe, published on xkcd.com, September 11, 2012

http://xkcd.com/1132/
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Does a small P -value provide evidence that H0 is false?
A more serious example:

For young women of age 30 the incidence of live-born infants
with Down’s syndrome is 1/885, and the majority of pregnancies
are normal. Even if the two conditional probabilities of a correct
test result, given either an affected or a normal fetus, were 99.5
percent, the probability of an affected child, given a positive test
result, would be only 18 percent. [...]
Thus, if we substitute “The fetus is normal” for H0, and “The
test result is positive (i.e. indicating Down’s syndrome)” for D,
we have P [D | H0] = 0:005, which means D is a significant
result, while P [H0 | D] = 0:82 (i.e., 1− 0:18).

Pauker, S. P., & Pauker, S. G. (1979). The amniocentesis decision: An explicit guide for parents. In C. J. Epstein, C. J. R.

Curry, S. Packman, S. Sherman, & B .D . Hall (Eds.), Birth defects: Original article series: Volume 15. Risk, communication,

and decision making in genetic counseling (pp. 289-324). New York: The National Foundation.
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Is Rejecting H0 Trivial?
Tukey and others have argued that a null hypothesis of the form
H0 : — = —0 is never true in practice; at some point in the decimal
expansion of the null value and the (unknown) true value, a difference will
occur with probability 1.
Therefore, testing to reject H0 is pointless: a significant result can always
be obtained if the sample size n is chosen large enough. Conversely, a
failure to reject H0 simply means that the sample size wasn’t large enough.
Hence, if H0 is rejected, that does not show that H0 was false (by the
above argument this was obvious anyway) but only that the researcher was
clever enough to put together a test with enough power to detect this.
One solution for this problem is to avoid two-tailed tests entirely.
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17. Neyman-Pearson Decision Theory
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Neyman-Pearson Decision Theory

In Neyman-Pearson decision theory, we consider two
competing hypotheses, denoted H0 and H1.
As before, we seek to reject H0H0H0, in which case we
accept H1H1H1.
We say that
I H0 is the null hypothesis,
I H1 is the research hypothesis or alternative

hypothesis.
The main difference to Fisher’s approach is that we
actually want to make a decision between two dis-
crete possibilities instead of just finding evidence for
or against H0.

Neyman, Jerzy (1894-1981) Jerzy
Neyman, Book of Proofs,
https://www.bookofproofs.org/history/jerzy-
neyman/

Egon Sharpe Pearson (1895-1980)
Bartlett, M. S. Egon Sharpe Pearson.
11 August 1895-12 June 1980.
Biographical Memoirs of Fellows of the
Royal Society, vol. 27, 1981, pp.
425443. JSTOR

https://www.bookofproofs.org/history/jerzy-neyman/
https://www.bookofproofs.org/history/jerzy-neyman/
https://www.bookofproofs.org/history/jerzy-neyman/
https://www.bookofproofs.org/history/jerzy-neyman/
http://www.jstor.org/stable/769879
http://www.jstor.org/stable/769879
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Example of Neyman-Pearson Decision Theory
17.1. Example. Let us revisit Example 16.4. The mean burning rate for a
rocket propellant is supposed to be —0 = 40 cm/s. It is known that the
standard deviation is ff = 2 cm/s. If the rocket propellant burns
significantly too fast or too slowly, it can not be used. An experimenter
sets out the two hypotheses

H0 : — = 40; H1 : |—− 40| ≥ 1:

If there is evidence that H1 is true, the rocket propellant must be
discarded, otherwise it can be used.
The P -value in Fisher’s test procedure represents a continuum of evidence
against H0, while in the Neyman-Pearson approach we will define a sharp
cut-off point for our data. If the data lies beyond this cut-off point, H0 is
rejected and H1 is accepted.
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Accepting Hypotheses
The statistical test will end with either
I failing to reject H0, therefore accepting H0 or
I rejecting H0, thereby accepting H1.

If we accept H0, we do not necessarily believe H0 to be true; we simply
decide to act as if it were true. The same is the case if we decide to accept
H1; we are not necessarily convinced that H1 is true, we merely decide to
assume that it is.
17.2. Example. In the situation described in Example 17.1,
I accepting H0 means that we assume that the rocket propellant burns

at a mean rate of 40 cm/s. It does not mean that we actually believe
that the value is precisely 40 and not 39.993, for instance.

I accepting H1 means that we assume that the rocket fuel burns at a
rate different by more than 1 cm/s from the nominal rate. It does not
necessarily mean that we have evidence to support this, merely that
we will assume that it is the case.
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Type I and Type II Errors
Given a choice between H0 and H1, there are four possible outcomes of the
decision-making process:

(i) We reject H0 (and accept H1) when H1 is true.
(ii) We reject H0 (accept H1) even though H0 is true (Type I error).
(iii) We fail to reject H0 even though H1 is true (Type II error).
(iv) We fail to reject H0 when H0 is true.
We will design a test to decide between rejecting or failing to reject H0

based solely on the probability of committing Type I or Type II errors,
which we want (of course) to keep as small as possible.
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Power, Type I & Type II Error Probabilities
We define the probability of committing a Type I error,

¸ := P [Type I error] = P [reject H0 | H0 true]
= P [accept H1 | H0 true]:

The probability of committing a Type II error is denoted

˛ := P [Type II error] = P [fail to reject H0 | H1 true]
= P [accept H0 | H1 true]:

Related to ˛ is the power of the test, defined as

Power := 1− ˛ = P [reject H0 | H1 true]
= P [accept H1 | H1 true]:
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¸ and the Critical Region
To set up the test, we select a test statistic and determine a critical
region for the test: if the value of the test statistic falls into the critical
region, then we reject H0. Our critical region is determined by the desire to
keep ¸ small, e.g., less than 5%.
Hence, we determine the critical region in such a way that if H0 is true,
then the probability of the test statistic’s values falling into the critical
region is not more than ¸.
17.3. Example. In the situation described in Example 17.1, we may use X
as a test statistic. The experimenter tests a sample of n = 25 specimen.
If H0 is true, X will follow a normal distribution with mean — = 40 and
ff=
√
n = 2=5, i.e.,

Z =
X − —0

ff=
√
n

follows a standard normal distribution.
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¸ and the Critical Region
Hence, with a probability of 1− ¸,

−z¸=2 ≤ Z ≤ z¸=2:

If H0 is true, then the probability that

|X − —0|
ff=
√
n

> z¸=2

is equal to ¸. Therefore, the critical region is determined by

x ̸= —0 ± z¸=2
ff√
n
: (17.1)



Neyman-Pearson Decision Theory Slide 404

¸ and the Critical Region
Suppose the experimenter would like to limit ¸, the probability of
committing a Type I error if she rejects H0, to 5%. This corresponds to
z¸=2 = 1:96 and inserting the values for —0, ff and n, we find with
probability 1− ¸,

39:216 < X < 40:784:

Hence the critical region is determined by

|X − 40| > 0:784: (17.2)

If X falls into the range of values satisfying (17.2), the experimenter will
reject H0, knowing that this decision will be wrong with a probability of at
most 5%.
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¸ and the Critical Region
17.4. Remarks.

(i) In this scheme, The decision whether to reject H0 or not is not driven
by the probability of H0 being true or not, but solely by the
probability of committing an error if H0 is falsely rejected.

(ii) Only H0 plays a role in the calculation of the critical region. H1 does
not enter into the discussion at all.

(iii) Rejecting H0 (when the data falls into the critical region) does not
actually mean that there is proof that H1 is true; in the example
above, H0 can be rejected even if |X − 40| < 1.
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¸ and the Critical Region
If the experimenter in the previous example had wanted to reduce the
probability of making a wrong decision when rejecting H0, she could have
set a higher bar for rejection: to achieve ¸ = 1%, she would require˛̨̨̨

˛X − —0

ff=
√
n

˛̨̨̨
˛ ≥ z¸=2 = 2:575:

This would lead to a critical region of
|X − 40| > 1:03:

If H0 were then rejected because the sample mean fell into the critical
region, the chance of this being in error would only be 1%. The trade-off is
that it becomes less likely that the data will allow rejection of H0 in the
first place.
In this context, it is important to note:

In order for the statistical procedure to be valid, the critical
region must be fixed before data are obtained.
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˛ and the Sample Size
The second type of error concerns failing to reject H0 even though H1 is
true. We calculate this probability in the case of

H0 : — = —0; H1 : |—− —0| ≥ ‹0

as follows. Suppose that the true value of the mean is — = —0 + ‹, ‹ > 0.
The test statistic

Z =
X − —0

ff=
√
n

will then follow a normal distribution with unit variance and mean ‹
√
n=ff.

Supposing that ¸ has been fixed, we will fail to reject H0H0H0 if

−z¸=2 ≤ Z ≤ z¸=2:

or
—0 − z¸=2

ff√
n
< x < —0 + z¸=2

ff√
n
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Illustration of ˛

μ0 μ0 + δ
x

fX

1 - α

β

P[fail to reject H0 µ = µ0]

P[fail to reject H0 µ = µ0 + δ]
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Calculating ˛ for the Normal Distribution
Using the density of the normal distribution, we then find

P [fail to reject H0 | — = —0 + ‹]

=
1√
2ı

z¸=2Z
−z¸=2

e−(t−‹
√
n=ff)2=2 dt

=
1√
2ı

z¸=2−‹
√
n=ffZ

−z¸=2−‹
√
n=ff

e−t2=2 dt (17.3)

≈ 1√
2ı

z¸=2−‹
√
n=ffZ

−∞

e−t2=2 dt:
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Calculating ˛ for the Normal Distribution
Let us suppose H1 is true, i.e., |—− —0| ≥ ‹0. Then

˛ = P [fail to reject H0 | H1 true]
≤ P [fail to reject H0 | — = —0 + ‹0]

and we have (to good approximation)

˛(—) ≤ 1√
2ı

z¸=2−‹
√
n=ffZ

−∞

e−t2=2 dt:

Adapting the notation from (15.2), we use the number z˛ ∈ R to indicate

˛ =
1√
2ı

−z˛Z
−∞

e−t2=2 dt:
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Calculating ˛ for the Normal Distribution
Then the relationship between ‹; ¸; ˛ and n with ff known is given by

−z˛ ≈ z¸=2 − ‹
√
n=ff

or

n ≈
(z¸=2 + z˛)

2ff2

‹2
: (17.4)

In this way a desired (small) ˛ can be attained by choosing an appropriate
sample size n.
Similarly to the convention used for ¸, the number ˛ when quoted for a
Neyman-Pearson test usually refers to the upper bound of committing a
Type II error.
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Designing an Experiment for Desired ¸ and ˛

17.5. Example. Revisiting Example 17.1, the experimenter would like to
test the hypotheses

H0 : — = 40; H1 : |—− 40| ≥ 1:

in such a way that ¸ = 5% and ˛ = 10%, i.e, if H0 is rejected, there is a
5% chance of this being in error, and if H0 is not rejected (H1 is accepted)
there is a 10% chance of this being in error.
The critical region is set as before and the necessary sample size is
calculated from (17.4) using ˛ = 0:10, ¸ = 0:05, ff = 2 cm/s and
‹ = 1 cm/s. Then

n ≈ 42;

so the sample size should be at least 42 to ensure ˛ ≤ 0:10.
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Power
Another way to think about ˛ is in terms of power, defined as 1− ˛ and
formally given by

1− ˛ = P [accept H1 | H1 true]:

A given experiment is set up so that we either reject H0 or we don’t.
Generally, we would like the probability of rejecting H0 if the alternative
hypothesis is true to be high, i.e., ˛ to be small. Choosing a sufficiently
large sample size ensures that the data gathered is powerful enough to
actually reject H0, assuming H1 is true.
One says that an experiment has high power if rejection of H0 is likely,
assuming H1 is true.Generally speaking, a given test is more powerful than
another if it requires a smaller sample size to attain the same ˛.
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Operating Characteristic (OC) Curves
In (17.3) we calculated the probability of failing to reject H0 as an integral.
In practice, it may be difficult to perform such a calculations for
non-normal distributions and evaluating the resulting integral may be
impractical. For this reason, it is possible to refer to so-called operating
characteristic curves, known also as OC curves.
A single OC curve plots the probability of failing to reject H0 in a
one-sided or two-sided test as a function of the parameter „. A single such
curve represents a choice of test parameters ¸ and n. Other parameters of
the distribution are also incorporated into the graph.
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Operating Characteristic (OC) Curves
The figure below shows an OC curve for a two-sided test of the null
hypothesis H0 : — = —0 performed at fixed level ¸ and fixed sample size n.

μ0
μ

1
1-α

P[fail to reject H0]
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Effect of ¸ on an OC Curve
Note that

P [fail to reject H0 | — = —0] = 1− ¸;

since
P [reject H0 | — = —0] = P [reject H0 | H0 true] = ¸;

by the construction of the test. For different values of ¸, the curves scale
correspondingly:

μ0
μ

1
1-α1

1-α2

P[fail to reject H0]
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Effect of the Sample Size on an OC Curve
The sample size affects an OC curve as shown below for n2 > n1:

μ0
μ

1
1-α

P[fail to reject H0]

n1

n2

A typical graph will show OC curves for various values of n. Furthermore,
for two-sided tests, only the right-hand half of the curve is shown to save
space.
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Using OC Curves to Relate Sample Sizes with ˛

17.6. Example. Continuing from Example 16.4, suppose that the analyst is
concerned about the probability of a Type II error if the true mean burning
rate is — = 41 cm/s. We may use the following operating characteristic
curve (specific to ¸ = 0:05) to find ˛:
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Using OC Curves to Relate Sample Sizes with ˛

In this graph,
d :=

|—− —0|
ff

=
41− 40

2
=

1

2
:

Since in our example n = 25 we can read off ˛ ≈ 0:30.
17.7. Example. In Examples 17.5 we used a formula to find the sample
size necessary to reject H0 if H1 is actually true. We can also read the
result directly from the OC curve as follows:
We want to have ˛ ≤ 0:1 if

d =
|—− —0|

ff
=
|—− 40|

2
≥ 1

2
:

We see that the point (d; ˛) = (0:5; 0:1) is between the OC curves for
n = 40 and n = 50 and that the curve remains below 0:1 for d > 1=2.
Thus the test should involve a sample size of about n = 45 or more.
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OC Curves for One-Tailed Tests
Given a one-sided null hypothesis of the form

H0 : „ ≤ „0; or H0 : „ ≥ „0

an analogous calculation the probability of failing to reject H0 may be
performed, leading to an OC curve as shown below:

μ0
μ

1
1-α

P[fail to reject H0]

H0 : μ  μ0

H0 : μ ≤ μ0
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Summary of Neyman-Pearson Decision Theory
(i) Select appropriate hypotheses H1 and H0 and a test statistic;

(ii) Fix ¸ and ˛ for the test;

(iii) Use ¸ and ˛ to determine the appropriate the sample size;

(iv) Use ¸ and the sample size to determine the critical region;

(v) Obtain the sample statistic; if the test statistic falls into the critical
region, reject H0 at significance level ¸ and accept H1. Otherwise,
accept H0.
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Comparison of Fisher and Neyman-Pearson Tests
Superficially, Fisher’s test of H0 and the Neyman-Pearson test are related
as follows:

If the P -value in Fisher’s test is no greater than the value of ¸ in
Neyman-Pearson’s decision process, then H0 is rejected and H1

accepted. Otherwise, H0 is not rejected.

However, this ignores the different philosophies of the approaches: Fisher is
concerned about gathering evidence against H0, without necessarily
coming to an outright rejection, while Neyman-Pearson desire a definite
decision for either H1 or H0.
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Relationship to Confidence Intervals
We have seen in (17.1) that the two-tailed null hypothesis H0 : — = —0 is
rejected if

x ̸= —0 ± z¸=2
ff√
n
:

This is equivalent to
—0 ̸= x ± z¸=2

ff√
n
:

Hence, we have the following relationship to hypothesis tests:
I Neyman-Pearson: x lies in the critical region for ¸ if and only if the

null value —0 does not lie in a 100(1− ¸)% two-sided confidence
interval for —.

I Fisher: H0 is rejected at significance level ¸ if and only if the null
value —0 does not lie in a 100(1− ¸)% two-sided confidence interval
for —.

This generalizes to one-sided tests and is also true for other (non-normal)
distributions.
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Interpretation of the Neyman-Pearson Decision
Suppose that you are performing a Neyman-Pearson test for a population
mean with

H0 : — ≤ —0; H1 : — > —1

where —0 < —1. The test has been designed so that ¸ = 1%, ˛ = 5%.
Finally, H0 is not rejected, i.e., H0 is accepted. Then

(1) There is at most a 5% chance that H1 is true.
(2) There is a 99% chance that H0 is true.
(3) There is a 95% chance of this conclusion being correct.
(4) If H1 is in fact true, the chance of reaching this conclusion is at most

5%.
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18. Null Hypothesis Significance Testing
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Null Hypothesis Significance Testing
Modern textbooks with titles such as “Statistics for Engineers” and similar
do not explicitly teach either Fisher’s Test procedure nor the
Neyman-Pearson decision-making process, but rather a mixture of both.
This is now often called Null Hypothesis Significance Testing (NHST)
and works as follows:
I Two hypotheses, H0 and H1 are set up, but H1 is always the logical

negation of H0

I Then either a “hypothesis test” is performed, whereby a critical region
for given ¸ is defined, the test statistic is evaluated and H0 is either
rejected or accepted.

I Alternatively (and more commonly), the test statistic is evaluated
immediately, a P -value is found, and H0 is either rejected or accepted
based on that value.

I In either case, there is no meaningful discussion of ˛, since H1 is
exactly the negation of H0.
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Criticism of NHST
I A small P -value does not guarantee that a large probability that H0 is

false. Fisher did not intend for a small P -value to lead to a clear
rejection of H0, but only to serve as evidence against H0 if little else is
known.

I Rejecting H0 based on ¸ = 0:05 or 0:01 or any other value is arbitrary.
I NHST is actually biased against failing to reject H0. From a

Bayesian point of view, it is far too easy to reject H0 because P [H0]
does not enter into NHST.

I A two-sided test such as H0 : „ = „0, H1 : „ ̸= „0 is meaningless.
I The power (and ˛) of the test is not properly defined, since H1 is just

the alternative “not H0” rather than referring to a distinct value „1.
Occasionally, this „1 is then mentioned indirectly for purposes of
power calculations.
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Publication Bias and NHST
NHST is currently the preferred technique for verifying statistical results.
In the current academic environment, research papers are only publishable
if the results are statistically significant. Editors of scientific journals will
usually not publish results where P = 0:23, for example.
This means that many interesting studies are not made available to the
scientific community because they are considered to be “failed
experiments”. However, that does not mean that they are not useful (even
if H0 is true) or that H0 actually is false (since the experiment may simply
not have had enough power).
At the same time, this tempts researchers to continue increasing the
sample sizes of a study or to do repeated studies until they get a result
that is statistically significant and can be published.
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Publication Bias and NHST

xkcd: significant, Randall Munroe, published on xkcd.com, April 6, 2011

http://xkcd.com/882/
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Publication Bias and NHST

xkcd: significant, Randall Munroe, published on xkcd.com, April 6, 2011

http://xkcd.com/882/
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A “Tea-Test”
Consider the following example, given by Fisher in 1935:

In England, tea is often drunk together with milk. Suppose a tea
expert claims to be able to tell whether the milk or the tea has
been poured into a cup first. He is put to the test and is to state
whether or not a given cup was produced by pouring milk first.
His results are

correct, correct, correct, correct, correct, incorrect.

Question. What is the P -value of this test?
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A “Tea-Test”
There are (at least) two interpretations of this example:
I The intention of the researcher, not just the raw experimental data,

may determine the P -value of a test.
I In a hypothesis test, the outcomes that do not occur are just as

important as the outcomes that do occur.
In particular, it is not considered to be good statistical practice to repeat
an experiment to reject a null hypothesis until it is successful. To be
probabilistically pure in the NHST sense, an experiment should be run
once, and if the null hypothesis is not rejected, it should not be repeated.
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Implications for Science
This causes problems of another nature - should an experiment that fails
due to insufficient power really never be repeated ever again? That appears
to be quite contrary to the nature of scientific inquiry.
Of course this is nonsense! In Fisher’s approach, data may be obtained as
often as desired, a test repeated as often as necessary, since the proof only
serves as indirect evidence, not as a definitive rejection of the null
hypothesis. In Neyman-Pearson, there are two alternatives and in a given
situation, a decision is necessary. Therefore, data is gathered only once and
a decision is made in the concrete circumstances. The fact that the
alternative hypothesis is usually not just the negation of H1 ensures that
the result is meaningful.
However, since most researchers use the NHST approach, there is a large
proportion of Type II errors in unpublished papers and many studies that
would have led to good results that could not be obtained due to
insufficient power (e.g., small sample size) are abandoned forever.
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19. Single Sample Tests for the Mean and
Variance
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Instances of Hypothesis Tests
In this section, we will introduce various test statistics that can be used for
either Fisher tests or Neyman-Pearson decision tests. In either case, the
emphasis is first on rejecting some null hypothesis at a certain significance
level, either directly in a Fisher test or by the test statistic being in a
certain critical region. We will also discuss OC curves, as used in
Neyman-Pearson tests for most of these tests.
We have already described how to perform tests for the mean based on the
normal distribution with known variance (sometimes called Z-tests) and
will not repeat these here.
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The T -Test
19.1. T -Test. Let X1; : : : ; Xn be a random sample of size n from a normal
distribution and let X denote the sample mean, S2 the sample variance.
Let — be the unknown population mean and —0 a null value of that mean.
Then any test based on the statistic

Tn−1 =
X − —0

S=
√
n

is called a T-test.
We reject at significance level ¸
I H0 : — = —0 if |Tn−1| > t¸=2;n−1,
I H0 : — ≤ —0 if Tn−1 > t¸;n−1,
I H0 : — ≥ —0 if Tn−1 < −t¸;n−1.
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The T -Test
19.2. Example. The breaking strength of a textile fiber is a normally
distributed random variable. Specifications require that the mean breaking
strength should equal 150 psi. The manufacturer would like to detect any
significant departure from this value. Thus, he wishes to test

H0 : — = 150 psi H1 : |—− 150 psi| > 2:5 psi

A random sample of 15 fiber specimens is selected and their breaking
strengths determined. The statistic

T =
X − —0

S=
√
n

will follow a T14-distribution. We specify ¸ = 0:05, and find
t0:025;14 = 2:145. Thus, the critical region is given by |t| > 2:145.
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The T -Test
The sample mean and variance are computed from the sample data as
x = 152:18 and s2 = 16:63. Therefore, the test statistic is

t =
x − —0

s=
√
n

=
152:18− 150p

16:63=15
= 2:07;

which does not fall into the critical region, so there is insufficient evidence
to reject H0 at the 5% level of significance.

Note that the T -distribution may be used for X−—0

S=
√
n

when a sample is
obtained from a normal population. If a sample is obtained from a
non-normal population, care must be taken; for large to medium sample
sizes (n ≥ 25) it can be shown that violating the normality assumption
does not significantly change ¸ and ˛. For small sample sizes, a T -test
cannot be used and an alternative (non-parametric) test must be
employed; such tests will be discussed later.
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OC Curves for the T -Test
The OC curves for T -test have a similar appearance to those for the
normal distribution. However, when calculating the probability of failing to
reject H0 if — = —0 + ‹, ‹ > 0, as we did for the normal distribution, a
difficulty occurs. We obtain the quotient of a non-standardized (— ̸= 0)
normal distribution with a chi-distribution. This leads to the concept of
non-central T -distributions, which we will not go into here.
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OC Curves for the T -Test
The OC curves for the T -distribution feature an abscissa whose scale is
given by

d =
|—− —0|

ff
;

where ff is the unknown standard deviation of the random variable. We
are left with three options:

1. If available, we can use prior experiments to insert a rough estimate
for ff.

2. We can express the difference ‹ = |—− —0| relative to ff, e.g.,
prescribing d = ‹=ff < 1 for a small difference in the mean or
d = ‹=ff < 2 for a moderately large difference.

3. We substitute the sample standard deviation s for ff.
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OC Curves for the T -Test
19.3. Example.
We return to Example 19.2. If the mean breaking strength of the fiber
differs from 150 psi by 2.5 psi or more, we would like to reject the null
hypothesis H0 : — = 150 psi with a probability of at least 0.9. Is the sample
size n = 15 adequate to assure that the test is this sensitive?

If we use the previously obtained stan-
dard deviation s =

√
16:63 = 4:08,

then

d =
|—− —0|

s
=

2:5

4:08
= 0:61:

The OC chart for n = 15, ¸ = 0:05,
two-tailed, then gives ˛ ≈ 0:35. Thus
the test is not powerful enough, since
1− ˛ = 0:65 < 0:9.
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The Chi-Squared Test
19.4. Chi-Squared Test. Let X1; : : : ; Xn be a random sample of size n from
a normal distribution and let S2 denote the sample variance. Let ff2 be the
unknown population variance and ff2

0 a null value of that variance. Then a
test for the variance based on the statistic

ffl2
n−1 =

(n − 1)S2

ff2
0

is called a chi-squared test. We reject at significance level ¸

I H0 : ff = ff0 if ffl2
n−1 > ffl2

¸=2;n−1 or ffl2
n−1 < ffl2

1−¸=2;n−1,
I H0 : ff ≤ ff0 if ffl2

n−1 > ffl2
¸;n−1,

I H0 : ff ≥ ff0 if ffl2
n−1 < ffl2

1−¸;n−1.
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The Chi-Squared Test
It is important to be aware of the following difficulty:
I The T -distribution can be used in the presence of large sample sizes

for the distribution of the sample mean even if the underlying
distribution is non-normal.

I It is, however, not possible to approximate the ffl2
n−1 statistic in this

way if the distribution is non-normal, regardless of sample size!
Therefore, normality of the data must first be tested, and if the data
is non-normal, other methods must be used.
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The Chi-Squared Test
19.5. Example. One random variable studied while designing the
front-wheel-drive half-shaft of a new model automobile is the displacement
(in millimeters) of the constant velocity (CV) joints. With the joint angle
fixed at 12◦, 20 simulations were conducted, resulting in the following data:

6:2 1:9 4:4 4:9 3:5
4:6 4:2 1:1 1:3 4:8
4:1 3:7 2:5 3:7 4:2
1:4 2:6 1:5 3:9 3:2

For these data, x = 3:39 and s = 1:41. Engineers designing the
front-wheel-drive half-shaft claim that the standard deviation in the
displacement of the CV shaft is less than 1.5 mm. Do these data support
this contention?
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The Chi-Squared Test
We can translate the described situation into a Fisher test for H0 : ff ≥ 1:5,
which is equivalent to testing

H0 : ff
2 ≥ 2:25:

We obtain ffl2
1−0:05;19 = 10:1. Hence the test will have a P -value of less

than 0:05 if
(n − 1)s2

ff2
0

< 10:1:

The observed value of the test statistic is

19 · 1:412
2:25

= 16:79:

Since this value is greater than 10.1, there is no evidence to reject H0 at
the 5% level of significance.
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OC Curves for the Chi-Squared Test
The abscissa parameter for the OC curves for the two-tailed chi-squared
test is

– =
ff

ff0
:

Note that the OC curves for the left- and right-tailed chi-squared
distributions are distinct!
19.6. Example. Returning to Example 19.5, the engineers concerned are
dissatisfied that H0 was not rejected. A second test (this time of
Neyman-Pearson type) is to be performed to establish that the standard
deviation is less than ff0 = 1:5mm.

1. If we want to preset ¸ = 0:05, what is the critical region for the test
at a sample size n = 20?

2. If n = 20, what true value of ff is necessary so that the test will have
a power of 1− ˛ = 0:9?

3. For ¸ = 0:05, make a statement on the sample size necessary to
ensure that H0 is rejected with 90% probability if ff = 1:35.
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OC Curves for the Chi-Squared Test
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OC Curves for Tests on the Variance
1. From the table for the ffl2

19 distribution we see that
P [ffl2

1−0:05;19 ≤ 10:1] = 0:05, so the critical region for the variance is

(n − 1)s2

ff2
0

< 10:1 ⇔ s2 <
2:25 · 10:1

19
= 1:20

i.e., s < 1:09.
2. For n = 20, the line intersects the horizontal rule ˛ = 0:1 at – = 0:6.

This means that
ff < 0:6ff0 = 0:9

is necessary for H0 to be rejected 90% of the time.
3. The graph shows that a sample size significantly larger than n = 100

would be necessary.
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20. Non-Parametric Single Sample Tests for the
Median
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Non-Parametric Statistics
Previously: used methods based on normal distribution
Now: methods that work more generally, without any assumption on the
random variable X.
Two basic concepts:
I non-parametric statistics do not assume the dependence on any

parameter.
20.1. Example. The confidence interval for the mean derived previously has
the form

X ± z¸=2
ff√
n

or X ± t¸=2;n−1
S√
n
;

which uses the parameters z¸=2 and ff (or t¸=2;n−1).
In contrast, in the assignments we have studied a non-parametric
confidence interval for the median which does not use any parameter that
is not directly derived from the random sample.
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Non-Parametric Statistics
Two basic concepts:
I non-parametric statistics do not assume the dependence on any

parameter.
I distribution-free statistics do not assume that X follows any

particular distribution (such as the normal distribution).

Although different, both types of methods are loosely referred to as
non-parametric methods.
Generally, one uses
I the median or other location measure instead of the mean;
I the interquartile range or other dispersion measure instead of the

variance.
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Sign Test for the Median
The median of a random variable X is defined as the value M such that

P [X < M] +
1

2
P [X = M] =

1

2
:

Of course, then also

P [X > M] +
1

2
P [X = M] =

1

2
:

The sign test will have a null hypothesis of either the two-tailed or
one-tailed form

I H0 : M = M0

I H0 : M ≤ M0 or H0 : M ≥ M0

and is usually implemented as a Fisher test.
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Sign Test for the Median
The idea is simple: Given a random sample X1; : : : ; Xn of size n from X,
each measurement has a 1=2 probability of being smaller than M and a
1=2 probability of being larger than M.
(We neglect for now the possibility of Xk = M.)
If significantly less than one-half of the sample measurements is less than
or greater than M0, this may be taken as evidence to reject H0.
Given a sample X1; : : : ; Xn, define

Q+ = #{Xk : Xk −M0 > 0}; Q− = #{Xk : Xk −M0 < 0}:

So Q+ is the number of “positive signs” and Q− the number of “negative
signs.” We note that

P [Q− ≤ k | M = M0] =
kX

x=0

 
n

x

!
1

2n
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Sign Test for the Median
20.2. Sign Test. Let X1; : : : ; Xn be a random sample of size n from an
arbitrary continuous distribution and let

Q+ = #{Xk : Xk −M0 > 0}; Q− = #{Xk : Xk −M0 < 0}:

We reject at significance level ¸

I H0 : M ≤ M0 if P [Q− ≤ k | M = M0] < ¸,

I H0 : M ≥ M0 if P [Q+ ≤ k | M = M0] < ¸,

I H0 : M = M0 if P [min(Q−; Q+) ≤ k | M = M0] < ¸=2.



Non-Parametric Single Sample Tests for the Median Slide 460

Sign Test for the Median
20.3. Example. A certain six-sided die is suspected of being unbalanced.
Based on past experience, it is suspected that the median is greater than
3.5. We decide to test the null hypothesis

H0 : M ≤ 3:5:

The die is rolled 20 times, yielding the following results:

Xi Xi −M0 Sign
5 1.5 +
1 -2.5 −
5 1.5 +
4 0.5 +
4 0.5 +
6 2.5 +
6 2.5 +

Xi Xi −M0 Sign
3 -0.5 −
6 2.5 +
2 -1.5 −
3 -0.5 −
5 1.5 +
5 1.5 +
6 2.5 +

Xi Xi −M0 Sign
4 0.5 +
4 0.5 +
4 0.5 +
3 -0.5 −
3 -0.5 −
4 0.5 +
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Sign Test for the Median
We note that there are 6 negative signs,

Q− = 6:

We then find that

P [Q− ≤ 6 | M = 3:5] =
1

220

6X
x=0

 
20

x

!
= 0:0577:

This is the P -value of the test. It would be reasonable to decide not to
reject H0, i.e., the results do not provide convincing evidence that H0 is
false.
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Assumptions, Limitations and Issues
Advantages:
I Very flexible, no assumptions on distribution of X.
I Magnitude of Xi −M0 is not needed.

Disadvantages:
I Not very powerful.

Possible Issues:
I In some situations, especially when sampling from a discrete

distribution, it may happen that

Xi −M0 = 0:

In such case, usual practice is to exclude the data from the
analysis.
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Wilcoxon Signed Rank Test

The power of the sign test can be increased by taking the
magnitude of Xi −M0 into account.
In order to avoid using parameters, Wilxcoxon introduced
the notion of ranks: observations are ranked from small-
est to largest and instead of considering simply their sign,
one analyzes the signed rank. Frank Wilcoxon (1892-1965). A R

Sampson and B Spencer, A
conversation with I. Richard Savage,
Statistical Science 14 (1999), 126-148.

1 2 3 4 5 6

https://projecteuclid.org/download/pdf_1/euclid.ss/1009211808
https://projecteuclid.org/download/pdf_1/euclid.ss/1009211808
https://projecteuclid.org/download/pdf_1/euclid.ss/1009211808
https://projecteuclid.org/download/pdf_1/euclid.ss/1009211808
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Wilcoxon Signed Rank Test
I The data in a sample of size n is ranked from smallest to largest

absolute difference to the null value of the median.
I The observation where |Xi −M0| is smallest will be ranked first and

be assigned rank Ri = 1, while the observation where |Xj −M0| is
largest will receive rank Rj = n.

I The signed rank is found by multiplying the rank with −1 if
Xi −M0 < 0 and +1 if Xi −M0 > 0.

I The positive ranks as well as the negative ranks are summed
separately, yielding two statistics W+ and W−.

I Ties in ranks are assigned the average of their ranks.
I The total sum of the ranks is always n(n + 1)=2.
I If M = M0, we expect that the sum of the positive ranks is roughly

equal to the sum of the negative ranks.
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Symmetric Distributions
The analysis of ranks supposes that the data comes from a distribution
that is symmetric about its median. This assumption was not needed for
the sign test.
A random variable X is said to be symmetric about a ∈ R if

X − a and − (X − a)

have the same distribution.
In terms of the density function fX this means that

fX(x − a) = fX(a− x)

(as can be verified by applying Theorem 7.5.)
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21. Inferences on Proportions
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Estimating Proportions
One of the (mathematically) simplest population parameters of general
interest is the proportion of members of a population with some trait.
Every member of the population is characterized as either having or not
having this trait. We describe this mathematically by defining the random
variable

X =

(
1 has trait,
0 does not have trait.

The proportion of the members of the population having the trait is

p =
# members wih trait

population size =
1

N

NX
i=1

xi

where N is the population size and xi is the value of the variable X for the
ith member of the population. Hence the proportion is equal to the mean
of X.
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Estimating Proportions
It follows that if we take a random sample X1; : : : ; Xn of X, the sample
mean bp = X =

1

n

nX
i=1

Xi

is an (unbiased) estimator for p.
The random variable X follows a Bernoulli distribution with expectation
E[X] = p and variance Var[X] = p(1− p). However, it is often more
convenient to use a normal distribution for confidence intervals and
hypothesis tests.
By the central limit theorem, bp is approximately normally distributed with
mean p and variance p(1− p)=n. Hence,

bp − pp
p(1− p)=n

is approximately standard-normally distributed.
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Estimating Proportions
It follows immediately that the following is a 100(1− ¸)% confidence
interval for p: bp ± z¸=2

q
p(1− p)=n

But the interval depends on the unknown parameter p, which we are
actually trying to estimate! One solution to the problem is to replace p bybp, i.e., to write bp ± z¸=2

qbp(1− bp)=n:
But then the number z¸=2 is no longer accurate (when we replaced ff by S
to obtain a confidence interval for the mean, we had to switch from z¸=2
to t¸=2).
However, we are approximating the binomial distribution in any case - we
might argue that if the sample size n is large enough to allow the central
limit theorem to hold, then the difference between z¸=2 and a corrected
value will be negligible. This is not a perfect solution, but a detailed
discussion would lead to far here.
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Estimating Proportions
21.1. Example. In 2017, the Institute of Sociology of the Shanghai
Academy of Social Sciences conducted a survey among residents of
Shanghai to ask their opinion about the municipal proposal to limit the
numbers of residents to 25 million by 2020 and keep that number stable
until 2040.
Among the 2079 residents surveyed, 48.5% indicated that this measure
would benefit Shanghai’s development. Assuming that those questioned
constitute a random sample of Shanghai residents, a 99% confidence
interval for the proportion of residents with this opinion is given by

p = 0:485± 2:575
q
0:485 · 0:515=2079 = 0:485± 0:028

Literature: https://archive.shine.cn/metro/society/
Pros-and-cons-of-limiting-citys-population/shdaily.shtml

https://archive.shine.cn/metro/society/Pros-and-cons-of-limiting-citys-population/shdaily.shtml
https://archive.shine.cn/metro/society/Pros-and-cons-of-limiting-citys-population/shdaily.shtml


Inferences on Proportions Slide 472

Choosing the Sample Size
As a practical matter, we are often able to choose (perhaps within
constraints) the sample size. We may want to be able to claim that “with
xx% probability, bp differs from p by at most d .”
Given a 100(1− ¸)% confidence interval p = bp ± z¸=2

pbp(1− bp)=n, we
know with 100(1− ¸)% confidence that

d = z¸=2

qbp(1− bp)=n:
Given d , this means that we should choose

n =
z2¸=2 bp(1− bp)

d2

to ensure that |p − bp| < d with 100(1− ¸)% confidence. However, this
formula requires us to have an estimate bp of p beforehand.



Inferences on Proportions Slide 473

Choosing the Sample Size
If no estimate for p is available, we can at least use that x(1− x) < 1=4
for all x ∈ R to deduce that

n =
z2¸=2

4d2

will ensure |p − bp| < d with 100(1− ¸)% confidence.

21.2. Example. How large a sample is needed to estimate the proportion of
members in a population with a certain trait to within 0.02 with 90%
confidence?
Since no prior estimate is available, we take

n =
z20:05
4d2

=
1:6452

4 · 0:022 = 1692:
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Hypothesis Testing
21.3. Test for Proportion. Let X1; : : : ; Xn be a random sample of (large)
size n from a Bernoulli distribution with parameter p and let bp = X denote
the sample mean. Then any test based on the statistic

Z =
bp − p0p

p0(1− p0)=n

is called a large-sample test for proportion.
We reject at significance level ¸
I H0 : p = p0 if |Z| > z¸=2,
I H0 : p ≤ p0 if Z > z¸,
I H0 : p ≥ p0 if Z < −z¸.
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Comparing Two Proportions
Two Populations:
I X(1) ∼ Bernoulli(p1),
I X(2) ∼ Bernoulli(p2).

Goal: make inferences on p1 − p2.
Suppose a random sample of size n1 from population 1 and another
random sample of size n2 from population 2 are given.
An unbiased estimator for p1 − p2 is

\p1 − p2 := bp1 − bp2 = X
(1) − X

(2)
;

where X
(1) and X

(2) are the sample means of the respective random
samples.
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A Confidence Interval
We have the approximate distributions

X
(1) ∼ N

“
p1;

p1(1− p1)

n1

”
; X

(2) ∼ N
“
p2;

p2(1− p2)

n2

”
We can infer that for large samples

\p1 − p2 ∼ N
“
p1 − p2;

p1(1− p1)

n1
+

p2(1− p2)

n2

”

This allows us to deduce the following 100(1− ¸)% confidence interval for
p1 − p2:

bp1 − bp2 ± z¸=2

s bp1(1− bp1)
n1

+
bp2(1− bp2)

n2

which is valid for large sample sizes.
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Comparing Two Proportions
21.4. Test for Comparing Two Proportions. Suppose two random samples
of (large) sizes n1 and n2 from two Bernoulli distributions with parameters
p1 and p2 are given. Denote by bp1 and bp2 the means of the two samples.
Let (p1 − p2)0 be a null value for the difference p1 − p2. Then the test
based on the statistic

Z =
bp1 − bp2 − (p1 − p2)0rbp1(1−bp1)

n1
+ bp2(1−bp2)

n2

is called a large-sample test for differences in proportions.
We reject at significance level ¸
I H0 : p1 − p2 = (p1 − p2)0 if |Z| > z¸=2,
I H0 : p1 − p2 ≤ (p1 − p2)0 if Z > z¸,
I H0 : p1 − p2 ≥ (p1 − p2)0 if Z < −z¸.
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Pooled Estimator for the Proportion
Most commonly we test against the null value (p1 − p2)0 = 0, i.e.,

H0 : p1 = p2:

If H0 is true, the common proportion is

p = p1 = p2:

Then both bp1 and cp2 are estimators for p.
It turns out that the best course of action is to take the weighted average:
we define the pooled estimator for the proportion,

bp :=
n1 bp1 + n2 bp2
n1 + n2

: (21.1)
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Pooled Test for Equality of Proportions
21.5. Pooled Test for Equality of Proportions. Suppose two samples of
(large) sizes n1 and n2 from two Bernoulli distributions with parameters p1
and p2 are given. Denote by bp1 and bp2 the means of the two samples. Letbp be the pooled estimator for the proportion. Then the test based on the
statistic

Z =
bp1 − bp2rbp(1− bp) “ 1

n1
+ 1

n2

” :
is called a pooled large-sample test for equality of proportions.
We reject at significance level ¸
I H0 : p1 = p2 if |Z| > z¸=2,
I H0 : p1 ≤ p2 if Z > z¸,
I H0 : p1 ≥ p2 if Z < −z¸.
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Pooled Proportions
21.6. Example. Many consumers think that automobiles built on Mondays
are more likely to have serious defects than those built on any other day of
the week. To support this theory, a random sample of 100 cars built on
Monday is selected and inspected. Of these, eight are found to have serious
defects. A random sample of 200 cars produced on other days reveals 12
with serious defects. Do these data support the stated contention?

We test

H0 : p1 ≤ p2:

where p1 denotes the proportion of cars with serious defects produced on
Mondays.
Estimates for p1 and p2 are

bp1 = 8=100 = 0:08; bp2 = 12=200 = 0:06:
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Pooled Proportions
The pooled estimate for the common population proportion is

bp =
100 · 0:08 + 200 · 0:06

100 + 200
= 20=300 = 0:066:

The observed value of the test statistic is
bp1 − bp2rbp(1− bp) “ 1

n1
+ 1

n2

” =
0:08− 0:06r

0:066 · 0:934
“

1
100 + 1

200

” = 0:658:

From the standard normal table, we see that the probability of observing
this large or a larger value is 0.2546, so there is no evidence that H0 might
be false.
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22. Comparison of Two Variances
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Comparing Two Variances
Two Normally-Distributed Populations:

I X(1) ∼ N(—1; ff
2
1),

I X(2) ∼ N(—2; ff
2
2).

Goal: Develop a test to compare ff2
1 and ff2

2.
Taking samples of sizes n1 and n2 from the populations, we know that

(n1 − 1)S2
1

ff2
1

∼ ffl2
n1−1;

(n2 − 1)S2
2

ff2
2

∼ ffl2
n2−1:

The difference of two chi-squared distributions is hard to analyze, so we
may be better off looking at the quotient:

ff2
1 = ff2

2 if and only if ff2
1

ff2
2

= 1
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The F -Distribution
22.1. Definition. Let X2

‚1 and X2
‚2 be independent chi-squared random

variables with ‚1 and ‚2 degrees of freedom, respectively.
The random variable

F‚1;‚2 =
X2

‚1=‚1

X2
‚2=‚2

is said to follow an FFF -distribution with ‚1 and ‚2 degrees of freedom.

22.2. Remark. From the definition, it is clear that

P [F‚1;‚2 < x ] = P
h 1

F‚1;‚2
>

1

x

i
= 1− P

h
F‚2;‚1 <

1

x

i
;

so the density functions of the F‚1;‚2 and F‚2;‚1-distributions are related.
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Density of the F -Distribution
Using Theorem 11.2 for the density of the quotient of two independent
variables we can calculate the density function explicitly:
22.3. Lemma. The density of a random variable following an F -distribution
with ‚1 and ‚2 degrees of freedom is given by

f‚1;‚2(x) = ‚
‚1=2
1 ‚

‚2=2
2

Γ(‚1+‚2
2 )

Γ(‚12 )Γ(
‚2
2 )

x‚1=2−1

(‚1x + ‚2)(‚1+‚2)=2

for x ≥ 0 and f‚1;‚2(x) = 0 for x < 0.
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Critical Points of the F -Distribution
For 0 < ¸ < 1, we define the point f¸;‚1;‚2 by P [F‚1;‚2 > f¸;‚1;‚2 ] = ¸:

fα,γ1 ,γ2
x

fγ1 ,γ2

α

Selected critical values f¸;‚1;‚2 are tabulated. Since the F distribution has
two parameters ‚1 and ‚2, often only the values f0:1;‚1;‚2 and f0:05;‚1;‚2 are
listed for various values of ‚1 and ‚2.
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Critical Points of the F -Distribution
From Remark 22.2 we see that

1− ¸ = P [F‚1;‚2 ≥ f1−¸;‚1;‚2 ]

= 1− P [F‚1;‚2 < f1−¸;‚1;‚2 ]

= P [F‚2;‚1 < 1=f1−¸;‚1;‚2 ]

= 1− P [F‚2;‚1 ≥ 1=f1−¸;‚1;‚2 ]

!
= 1− P [F‚2;‚1 ≥ f¸;‚2;‚1 ]

so

f1−¸;‚1;‚2 =
1

f¸;‚2;‚1
: (22.1)

It follows that the values of the “right-tail” critical point f¸;‚1;‚2 are
sufficient to find corresponding “left-tail” points.
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The F -Distribution
22.4. Theorem. Let S2

1 and S2
2 be sample variances based on independent

random samples of sizes n1 and n2 drawn from normal populations with
means —1 and —2 and variances ff2

1 and ff2
2, respectively.

If ff2
1 = ff2

2, then the statistic
S2
1=S

2
2

follows an F -distribution with n1 − 1 and n2 − 1 degrees of freedom.

Proof.
We know that (n1 − 1)S2

1=ff
2
1 and (n2 − 1)S2

2=ff
2
2 follow chi-squared

distributions with n1 − 1 and n2 − 1 degrees of freedom, respectively. Then

Fn1−1;n2−1 =
[(n1 − 1)S2

1=ff
2
1]=(n1 − 1)

[(n2 − 1)S2
2=ff

2
2]=(n2 − 1)

=
ff2
2S

2
1

ff2
1S

2
2

:

If ff2
1 = ff2

2, this reduces to S2
1=S

2
2 .
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The F -Test
22.5. F -Test. Let S2

1 and S2
2 be sample variances based on independent

random samples of sizes n1 and n2 drawn from normal populations with
means —1 and —2 and variances ff2

1 and ff2
2, respectively. Then a test based

on the statistic
Fn1−1;n2−1 =

S2
1

S2
2

is called an F-test.
We reject at significance level ¸

I H0 : ff1 ≤ ff2 if S2
1

S2
2

> f¸;n1−1;n2−1,

I H0 : ff1 ≥ ff2 if S2
2

S2
1

> f¸;n2−1;n1−1,

I H0 : ff1 = ff2 if S2
1

S2
2

> f¸=2;n1−1;n2−1 or S2
2

S2
1

> f¸=2;n2−1;n1−1
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Remarks on the F -Test
22.6. Remarks.
I We have used (22.1) and written the critical regions in terms of

right-tailed points; note the subscripts of the critical points carefully!
I For the F -test to be applicable, it is essential that the populations are

normally distributed.
I If possible, the sample sizes n1 and n2 should be equal.
I It turns out that the F -test is not very powerful; ˛ can be quite large.

In order to keep ˛ small, one often tests at ¸ = 0:1 or ¸ = 0:2 level of
significance.

I When testing to see whether two population variances are equal for
the purposes of later applying other tests, such as a comparison of
their means, one hopes to not reject H0H0H0! In that case, the
probability of committing a (Type II) error is given by ˛ and a small ˛
is more important than a small ¸.
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Comparing Two Variances - The F -Test
22.7. Example. Chemical etching is used to remove copper from printed
circuit boards. X1 and X2 represent process yields in % when two different
concentrations are used. Suppose that we wish to test

H0 : ff
2
1 = ff2

2:

Two samples of sizes n1 = n2 = 8 yield s21 = 4:02 and s22 = 3:89, and

s21
s22

=
4:02

3:89
= 1:03:

We see that f0:1;7;7 = 2:785. Since our test statistic is much smaller than
this value, the P -value of the (two-tailed) test is significantly greater than
2 · 0:1 = 20%. There is not enough evidence to reject H0.
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OC Curves for the F -Test
For the case n1 = n2 = n there are OC curves plotting ˛ against the
parameter

– =
ff1
ff2

:

22.8. Example. Continuing from Example 22.7, suppose that one of the
concentrations affected the variance of the yield so that one of the
variances was four times the other and we wished to detect this with
probability at least 0.80. What sample size should be used?
For this situation, a Neyman-Pearson test should be used:

H0 : ff
2
1 = ff2

2; H1 : max

 
ff2
1

ff2
2

;
ff2
1

ff2
2

!
≥ 4

If one variance is four times the other, then – = ff1=ff2 = 2.
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OC Curves for the F -Test

From the OC chart, we see that a sample size of about 20 will be sufficient.
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23. Comparison of Two Means
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Comparing Two Means
Two Normally-Distributed Populations:

I X(1) ∼ N(—1; ff
2
1),

I X(2) ∼ N(—2; ff
2
2).

Goal: compare —1 and —2.
Three Basic Cases:
I ff2

1 and ff2
2 are known

I ff2
1 and ff2

2 are unknown but ff2
1 = ff2

2

I ff2
1 and ff2

2 are unknown and not necessarily equal

Also:
I paired comparisons
I non-parametric tests
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A Point Estimator for the Difference of Means
We take random samples X

(1) and X
(2) of sizes n1 and n2 from the

populations, we can find a point estimator for the difference of the two
means

\—1 − —2 := b—1 − b—2 = X
(1) − X

(2)
:

Since

X
(1) ∼ N(—1; ff

2
1=n1); X

(2) ∼ N(—2; ff
2
2=n2);

we see that X1 − X2 is normal with mean —1 − —2 and variance
ff2
1=n1 + ff2

2=n2, i.e.,
X

(1) − X
(2) − (—1 − —2)q

ff2
1=n1 + ff2

2=n2

is a standard normal random variable.
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Neyman-Pearson Test with Variances Known
We may use this result to obtain confidence intervals for the difference of
means and to conduct hypothesis tests.
23.1. Example. The plant manager at an orange juice canning facility is
interested in comparing the performance of two different production lines
in her plant. As line number 1 is relatively new, she suspects that its
output in number of cases per day is greater than the number of cases
produced by the older line 2.
She sets up the hypotheses

H0 : —1 ≤ —2; H1 : —1 > —2 + 10 cases :

She decides to use ¸ = 5%. The test statistic is

Z =
X1 − X2q

ff2
1=n1 + ff2

2=n2

and H0 will be rejected if this number is greater than z0:05 = 1:645.
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Neyman-Pearson Test with Variances Known
From experience with operating this type of equipment it is known that
ff2
1 = 40 and ff2

2 = 50.
Ten days of data are selected at random for each line, for which it is found
that x (1) = 824:9 cases per day and x (2) = 818:6 cases per day.
The value of the test statistic is then calculated to be

Z =
824:9− 818:6p
40=10 + 50=10

= 2:10:

Since Z > 1:645 we reject H0 at a 5% level of significance. The alternative
hypothesis H1 is accepted.
The plant manager concludes that the new production line produces 10
cases per day more than the older line (and may decide to replace more of
the older lines as a consequence).
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OC Curves for Variances Known
We can also use the OC curves for the normal distribution to find power
and sample size for a test. In that case, we use

d =
|—1 − —2|q
ff2
1 + ff2

2

with n = n1 = n2 (equal sample sizes).
If n1 ̸= n2, the table is used with the equivalent sample size

n =
ff2
1 + ff2

2

ff2
1=n1 + ff2

2=n2
:
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OC Curves for Variances Known
23.2. Example. Continuing from Example 23.1, if H1 is true, we want to
find the sample sizes (number of days) required to detect this difference
with a probability of 0.90.

We have d = 10=
√
40 + 50 = 1:05 and using the chart for ¸ = 0:05

(one-sided) we find n = n1 = n2 = 9.
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Confidence Interval for the Difference of Means
23.3. Example. Using the data of Example 23.1, a 95% lower confidence
bound for the difference in mean production is

—1 − —2 = x (1) − x (2) ± z¸

q
ff2
1=n1 + ff2

2=n2

= 824:9− 818:6− 1:645
q
40=10 + 50=10

= 6:3− 4:9

= 2:4

We could use this interval to decide whether or not to reject H0 : —1 ≤ —2

at the 5% level of significance: Since the lower bound is greater than zero,
H0 is rejected.
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Comparing Two Means - Equal Variances
Now suppose that the variances are equal but unknown,

ff2
1 = ff2

2 =: ff2:

Then
Z =

(X1 − X2)− (—1 − —2)q
ff2(1=n1 + 1=n2)

:

is standard normal
Similarly to (21.1), we define the pooled estimator for the variance

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
: (23.1)



Comparison of Two Means Slide 505

Comparing Two Means - Equal Variances
It is immediately clear that

X2
n1+n2−2 =

(n1 + n2 − 2)S2
p

ff2
=

(n1 − 1)S2
1

ff2
+

(n2 − 1)S2
2

ff2

follows a chi-squared distribution with n1 + n2 − 2 degrees of freedom.
Furthermore,

Tn1+n2−2 =
Zq

X2
n1+n2−2=(n1 + n2 − 2)

=
(X1 − X2)− (—1 − —2)q

S2
p(1=n1 + 1=n2)

follows a T -distribution with n1 + n2 − 2 degrees of freedom.
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Confidence Interval for the Difference of Means
We immediately obtain the following 100(1− ¸)% confidence interval for
—1 − —2,

(X1 − X2)± t¸=2;n1+n2−2

q
S2
p(1=n1 + 1=n2);

where t¸=2;n1+n2−2 is defined in (15.5).
23.4. Example. In a batch chemical process used for etching circuit boards,
two different catalysts are being compared to determine whether they
require different emersion times for removal of identical quantities of
photo-resistant material.
Twelve batches were run with catalyst 1, resulting in a sample mean
emersion time of x1 = 24:6minutes and a sample standard deviation of
s1 = 0:85minutes. Fifteen batches were run with catalyst 2, resulting in a
mean emersion time of x2 = 22:1minutes and a standard deviation of
s2 = 0:98minutes.



Comparison of Two Means Slide 507

Confidence Interval for the Difference of Means
We will find a 95% confidence interval on the difference in means —1 − —2

assuming that the variances of the two populations are equal. The pooled
estimate for the variance gives

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
= 0:8557

so sp = 0:925. Since t0:025;25 = 2:060, we obtain

—1 − —2 = (2:5± 0:74)minutes
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Student’s T -Test for Equal Variances
23.5. Student’s T -Test for Equal Variances. Suppose two random samples
of sizes n1 and n2 from two normal distributions N(—1; ff

2) and N(—2; ff
2)

are given.

Denote by X
(1) and X

(2) the means of the two samples and let S2
p be the

pooled sample variance (23.1). Let (—1 − —2)0 be a null value for the
difference —1 − —2. Then the test based on the statistic

Tn1+n2−2 =
(X

(1) − X
(2)

)− (—1 − —2)0q
S2
p(1=n1 + 1=n2)

is called a Student’s (pooled) test for equality of means.
We reject at significance level ¸
I H0 : —1 − —2 = (—1 − —2)0 if |Tn1+n2−2| > t¸=2;n1+n2−2,
I H0 : —1 − —2 ≤ (—1 − —2)0 if Tn1+n2−2 > t¸;n1+n2−2,
I H0 : —1 − —2 ≥ (—1 − —2)0 if Tn1+n2−2 < −t¸;n1+n2−2.
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Student’s T -Test for Equal Variances
23.6. Example. Two catalysts are being analyzed to determine how they
affect the mean yield of a chemical process. Specifically, catalyst 1 is
currently in use, but catalyst 2 is acceptable. Since catalyst 2 is cheaper, if
it does not change the process yield significantly, it should be adopted.
We decide to test the hypotheses

H0 : —2 ≥ —1; H1 : —2 ≤ —1 − 3%:

From experience with this type of chemical process, the yield follows a
normal distribution and the variance of the yield is independent of the
catalyst used.
We therefore conduct a Student T -test with ¸ = 5% and choose sample
sizes n1 = n2 = 8. Then the critical value of the test statistic is
t0:05;14 = 1:761.
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Student’s T -Test for Equal Variances
Pilot data yields

x1 = 93:75%; s21 = 3:89%2; x2 = 91:73%; s22 = 4:02%2:

Then s2p = 3:96%2 and the test statistic is

x1 − x2

sp
p
1=n1 + 1=n2

= 2:03:

Since this is greater than the critical value, we reject H0 and accept H1.
We conclude that catalyst 2 induces a significantly lower yield (by 3%)
than catalyst 1.
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OC Curves for Equal Variances
In the case of equal variances ff2

1 = ff2
2 = ff2 and equal sample sizes

n1 = n2 = n, we can use the usual OC curves for the T -test with

d =
|—1 − —2|

2ff
:

However, we must use the modified sample size n∗ = 2n − 1 when
reading the charts. As before, when ff is unknown, we must either use an
estimate or express the deviation in terms of ff.
23.7. Example. In setting up the experiment of Example 23.6 it was desired
that the power should be at least 0.85. What sample size was required?
We use ¸ = 0:05 and the previously determined sp = 1:99 as an estimate
for the common standard deviation ff.



Comparison of Two Means Slide 512

OC Curves for Equal Variances
Then d = ‹=(2ff) = 3=(2 · 1:99) = 0:75 and ˛ = 1− 0:85 = 0:15.

The chart gives n∗ = 15, so n = (n∗ + 1)=2 = 8 was sufficient.
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A Warning Regarding Pre-Testing
The previous discussion of Student’s T -test for comparison of means made
two assumptions:
I Both random variables follow normal distributions.
I Both random variables have equal variances ff2.

Comparing the means of two populations is a very common procedure in
many applied sciences. In such cases, there is a temptation to

(i) Collect data.
(ii) Perform pre-tests on the data (e.g., test for equality of variances or

test for normality)
(iii) Then perform the comparison of means test depending on the result

of the pre-test.

This is not recommended!
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A Warning Regarding Pre-Testing
Performing such pre-tests and then conditionally on the results using some
other test on the same data will invalidate the P -value of the
comparison of means test.
It is fine to test for normality, equality of variances or other properties and
then to gather new data for a comparison of means test. But using
the same data creates serious problems.

Literature:
I Rasch, D., Kubinger, K. and Moder, K. The two-sample T test: Pre-testing its

assumptions does not pay off. Stat. Pap. 52 (2011).
I Rochon, J., Gondan, M. and Kieser, M. To test or not to test: Preliminary

assessment of normality when comparing two independent samples. BMC Med
Res Methodol 12, 81 (2012).

I Zimmerman, D. W. A note on preliminary tests of equality of variances. Br J
Math Stat Psychol. 57 (2004).

https://www.researchgate.net/publication/226351592_The_two-sample_t_test_Pre-testing_its_assumptions_does_not_pay_off/citation/download
https://www.researchgate.net/publication/226351592_The_two-sample_t_test_Pre-testing_its_assumptions_does_not_pay_off/citation/download
https://doi.org/10.1186/1471-2288-12-81
https://doi.org/10.1186/1471-2288-12-81
https://doi.org/10.1186/1471-2288-12-81
https://doi.org/10.1348/000711004849222
https://doi.org/10.1348/000711004849222
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Populations with Unequal Variances
We now consider the case of two normal populations with unequal
variances. Recall that

X
(1) − X

(2) − (—1 − —2)q
ff2
1=n1 + ff2

2=n2

follows a standard normal distribution.
Now if the variances of the populations are not equal and unknown to us,
we are faced with estimating the variance:

\ 
ff2
1

n1
+

ff2
2

n2

!
=

S2
1

n1
+

S2
2

n2
:

The main problem is that the distribution of the right-hand side is
unknown.
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The Welch-Satterthwaite Approximation
23.8. Welch-Satterthwaite Relation. Let X(1); : : : ; X(k) be k independent
normally distributed random variables with variances ff2

1; : : : ; ff
2
k .

Let s21 ; : : : ; s2k be sample variances based on samples of sizes n1; : : : ; nk
from the k populations, respectively. Let –1; : : : ; –k > 0 be positive real
numbers and define

‚ :=
(–1s

2
1 + · · ·+ –ks

2
k )

2

kX
i=1

(–i s
2
i )

2

ni − 1

:

Then

‚ · –1s
2
1 + –2s

2
2 + · · ·+ –ks

2
k

–1ff
2
1 + –2ff

2
2 + · · ·+ –kff

2
k

follows approximately a chi-squared distribution with ‚ degrees of
freedom.
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The Welch-Satterthwaite Approximation
We are interested in the case k = 2, –1 = 1=n1 and –2 = 1=n2. Then

‚ =

`
S2
1=n1 + S2

2=n2
´2

(S2
1=n1)

2

n1−1 +
(S2

2=n2)
2

n2−1

: (23.2)

and
‚ · S

2
1=n1 + S2

2=n2
ff2
1=n1 + ff2

2=n2

follows approximately a chi-squared distribution with ‚ degrees of freedom.
It is then easy to see that

T‚ =
(X1 − X2)− (—1 − —2)0q

S2
1=n1 + S2

2=n2

follows a T -distribution with ‚ degrees of freedom.
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Welch’s T -Test for Unequal Variances
23.9. Welch’s T -Test for Unequal Variances. Suppose two random samples
of sizes n1 and n2 from two normal distributions N(—1; ff

2
1) and N(—2; ff

2
2)

are given.

Denote by X
(1) and X

(2) the means of the two samples and let ‚ given by
(23.2). Let (—1 −—2)0 be a null value for the difference —1 −—2. Then the
test based on the statistic

T‚ =
(X1 − X2)− (—1 − —2)0q

S2
1=n1 + S2

2=n2

is called a Welch’s (pooled) test for equality of means. We reject at
significance level ¸
I H0 : —1 − —2 = (—1 − —2)0 if |T‚ | > t¸=2;‚ ,
I H0 : —1 − —2 ≤ (—1 − —2)0 if T‚ > t¸;‚ ,
I H0 : —1 − —2 ≥ (—1 − —2)0 if T‚ < −t¸;‚ .
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Welch’s T -Test for Unequal Variances
23.10. Remarks.
I In practice, we round ‚‚‚ down to the nearest integer.
I One disadvantage of unequal variances is that power calculations are

much more difficult. There are no simple OC curves for Welch’s test.
I As remarked earlier, it is not a good idea to pre-test for equal

variances and then make a decision whether to use Student’s or
Welch’s test. In fact, current recommendations are to always use
Welch’s test. (This is different from what you find in most
textbooks. See, for example, the literature below.)
The reason is that Welch’s test is only slightly less powerful that
Student’s test even if the variances are equal. if they are unequal,
Student’s test is very unreliable.

Literature: The blog article at http://daniellakens.blogspot.com/2015/01/
always-use-welchs-t-test-instead-of.html and the author’s paper cited there.

http://daniellakens.blogspot.com/2015/01/always-use-welchs-t-test-instead-of.html
http://daniellakens.blogspot.com/2015/01/always-use-welchs-t-test-instead-of.html
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24. Non-Parametric Comparisons; Paired Tests
and Correlation
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Non-Parametric Comparison of Location
Problem: Two independent random variables X and Y are given. Nothing
is known about their distribution. Comparing means or even medians is
difficult.
Approach: Compare their locations by checking if

P [X > Y ] +
1

2
P [X = Y ]

?
=

1

2
:

If the above probability equals 1/2, a random observation of X will be
greater than or equal to a random observation of Y with probability
one-half, and of course the converse is also true.
Here we will assume that X and Y are continuous random variables, so
we may omit P [X = Y ].
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The Wilcoxon Rank-Sum Test
The Wilcoxon rank-sum test is used to decide whether to reject the null
hypothesis

H0 : P [X > Y ] =
1

2
or H0 : P [X > Y ] ≤ 1

2
:

If both X and Y follow the same distribution, possibly with different
location parameter, this may be interpreted as a test comparing the
medians of X and Y .
Observations of X and Y are ranked from smallest to largest. For each
population, the ranks are summed independently. If P [X > Y ] = 1=2, then
the sum of ranks should be roughly the same for both populations.
To make calculations easier, it is sufficient to consider the sums of ranks of
the smaller sample (if sample sizes are different).
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The Wilcoxon Rank-Sum Test
24.1. Wilcoxon Rank-Sum Test. Let X and Y be two random samples
following some continuous distributions.
Let X1; : : : ; Xm and Y1; : : : ; Yn, m ≤ n, be random samples from X and Y
and associate the rank Ri , i = 1; : : : ; m + n, to the Ri th smallest among
the m + n total observations. If ties in the rank occur, the mean of the
ranks is assigned to all equal values.
Then the test based on the statistic

Wm := sum of the ranks of X1; : : : ; Xm.

is called the Wilcoxon rank-sum test.
We reject H0 : P [X > Y ] = 1=2 (and similarly the analogous one-sided
hypotheses) at significance level ¸ if Wm falls into the corresponding
critical region.



Non-Parametric Comparisons; Paired Tests and Correlation Slide 525

The Wilcoxon Rank-Sum Test
The Wilcoxon rank-sum test is also called the Mann-Whitney U-test.
(Often, this refers to the equivalent test where all the ranks, not just those
of the smaller sample, are summed.)
For large values of m (m ≥ 20), Wm is approximately normally distributed
with

E[Wm] =
m(m + n + 1)

2
; Var[Wm] =

mn(m + n + 1)

12
:

If there are many ties, the variance may be corrected by taking

Var[Wm] =
mn(m + n + 1)

12−
P

groups
t3+t
12

where the sum is taken over all groups of t ties. However, the best way to
deal with ties is still a topic of current research.
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Example: Midterm Exam Scores
24.2. Example. It has been suggested that the most highly motivated JI
undergraduate students do at least as well, possibly even better, than
graduate students in my graduate-level mathematics courses. In the spring
term of 2018, there was a significant enrolment of undergraduate students
in Vv557 Methods of Applied Maths II. The results of the first midterm
exam are taken to serve as an indication of the possible truth of this
hypothesis.
The hypothesis to be tested is

H0 : P [Xundergrad > Xgrad] ≤ 1=2

where Xundergrad and Xgrad are the exam scores of undergraduate and
graduate students enrolled in Vv557.
(The null hypothesis can be interpreted as “undergraduate students do not
do better than graduate students in the first midterm.”)
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The Raw Data
The following data were recorded (points out of 20 maximum in the first
midterm exam):

Graduate 5.5 5.5 12.75 18.75 19.25 11.25
11.5 11.5 12.25 14.25 9.25 14.5
13.25 8.25 16.75 10.5 6 15.25
6.5 12.5 10.5 8.75 11.5 17
2.75 13.25 19 16.5 11.5 1.75

Undergraduate 18.5 12.25 3 15 19.75 11.25
11.75 19.25 12.25 19.75 16.25 13
19.25 1.75

The quartiles are,

Graduate : 8:75; 11:5; 14:5;

Undergraduate : 11:75; 14; 19:25:
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Visualizing the Data
The double bar chart below visualizes these data:

No. of Students
012345

No. of Students
0 1 2 3 4 5

5

10

15

20
Points in First Midterm

Graduate Students Undergraduate Students

Clearly, a non-parametric test is the best choice here.
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Ranking the Data
The data are arranged in order and ranked as follows:

Student Points Rank Student Points Rank Student Points Rank

grad 1.75 1.5 grad 11.5 17.5 undergrad 15 31
undergrad 1.75 1.5 grad 11.5 17.5 grad 15.25 32

grad 2.75 3 grad 11.5 17.5 undergrad 16.25 33
undergrad 3 4 grad 11.5 17.5 grad 16.5 34

grad 5.5 5.5 undergrad 11.75 20 grad 16.75 35
grad 5.5 5.5 grad 12.25 22 grad 17 36
grad 6 7 undergrad 12.25 22 undergrad 18.5 37
grad 6.5 8 undergrad 12.25 22 grad 18.75 38
grad 8.25 9 grad 12.5 24 grad 19 39
grad 8.75 10 grad 12.75 25 grad 19.25 41
grad 9.25 10 undergrad 13 26 undergrad 19.25 41
grad 10.5 12.5 grad 13.25 27.5 undergrad 19.25 41
grad 10.5 12.5 grad 13.25 27.5 undergrad 19.75 43.5
grad 11.25 14.5 grad 14.25 29 undergrad 19.75 43.5

undergrad 11.25 14.5 grad 14.5 30
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Calculating the Test Statistic
The sum of the ranks of the undergraduate students (smaller sample size)
is

w14 = 1:5 + 4 + 14:5 + 20 + 22 + 22 + 26

+ 31 + 33 + 37 + 41 + 41 + 43:5 + 43:5

= 380

Given the large sample sizes, we use a normal approximation for the test
statistic (most tables only include values for m; n ≤ 20). We have

E[W14] =
14(14 + 30 + 1)

2
= 315;

VarW14 =
14 · 30(14 + 30 + 1)

12
= 1575
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Performing the Fisher test
Therefore,

Z =
Wm − 315√

1575

follows a standard normal distribution if P [Xundergrad > Xgrad] = 1=2. The
value of our test statistic is

z =
380− 315√

1575
= 1:64:

Using the normal distribution table, we find a P -value of

P [Z ≥ 1:64] = 0:0505:

There is possibly a small indication that undergraduate students might do
better than graduate students, but the evidence is far from conclusive.



Non-Parametric Comparisons; Paired Tests and Correlation Slide 532

Discussion of the Wilcoxon Rank Tests
In the previous example we did not apply the correction for ties to the
variance of the normal distribution - why?
Had we done so, the variance would have been negative - not good!
Could we have used an exact table of critical values? No, because no such
table exist for m; n > 20. The Wilcoxon rank tests are combinatorial
tests and P -values become increasingly hard to calculate exactly as the
number of possible permutations of ranks increases with m and n.
For this reason, ties are problematic since they increase the number of
possible permutations. We have presented one way to deal with ties
(assigning the average rank) but this is not the only approach. This is the
subject of current research!
Literature: McGee, M. Case for omitting tied observations in the two-sample T-test
and the Wilcoxon-Mann-Whitney Test. PLoS One 13:7, 2018.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057651/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057651/
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Paired Tests
Problem: When comparing means (or, in general, the location) of two
populations extraneous factors may distort the results.

24.3. Example. Suppose we wish to study the efficacy of two different
drugs in fighting a disease, Drug A and Drug B. A simple approach would
be to treat 20 patients with Drug A and 20 patients with Drug B and then
compare the average degree of improvement.
However, it could be that (for example) the disease affects smokers more
severely than non-smokers.
If there are more smokers among the sample for Drug A than for Drug B,
this could cause the improvements measured for Drug A to be less evident
than for Drug B, even if overall Drug A were the better drug.
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Paired Tests
Instead, a better approach is to pair the samples: For every person with
certain characteristics (gender, age smoker/non-smoker, etc.) administered
with Drug A, a person with the same characteristics is administered Drug
B.
That means that the sample sizes must be equal in both populations and
every sample observation in one population is paired with a corresponding
observation in the other population.
Suppose we have two populations with random variables X and Y that we
wish to compare. We then define a new random variable

D := X − Y

and conduct all tests on D.
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Paired T -Tests
We note that

—D = E[D] = E[X − Y ] = E[X]− E[Y ] = —X − —Y :

Therefore, the hypothesis (for example)

H0 : —X = —Y may be replaced with H0 : —D = 0:

We will assume that X and Y follow a joint bivariate normal
distribution. Then it is not hard to see that D = X − Y follows a normal
distribution.
We then consider a paired random sample (X1; Y1); : : : ; (Xn; Yn) from both
populations yielding a sample D1; : : : ; Dn with Di := Xi − Yi , i = 1; : : : ; n.
We denote by D the sample mean and by S2

D the sample variance of D.
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Paired T -Tests
Then

Tn−1 =
D − —Dq
S2
D=n

follows a T -distribution with n − 1 degrees of freedom.
We may find confidence intervals for —D and conduct hypothesis tests as
we would for any normally distributed random variable. A T -test for D is
called a paired TTT -test for X and Y .
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Paired T -Tests
24.4. Example. In a study of the effectiveness of physical exercise in
weight reduction, a group of 16 persons engaged in a prescribed program
of physical exercise for one month showed the following results :

Weight before (X) 209 178 169 212 180 192 158 180
Weight after (Y ) 196 171 170 207 177 190 159 180

D = Y − X -13 -7 +1 -5 -3 -2 +1 0

Weight before (X) 170 153 183 165 201 179 243 144
Weight after (Y ) 164 152 179 162 199 173 231 140

D = Y − X -6 -1 -4 -3 -2 -6 -12 -4

We want to test at the 0.01 level of significance whether the exercise
program is effective.
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Paired T -Tests
We decide to test

H0 : —D ≥ 0:

From the n = 16 data we have D = −4:125 and s2D = 16:517. The test
statistic is

T =
D

sD=
√
n
= −4:06:

Since t0:01;15 = 2:602, we may reject H0 at the 0.01 level of significance.
There is evidence that the physical exercise program leads to a loss of
weight.
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Non-Parametric Paired Test
Suppose the two independent random variables X and Y do not follow a
normal distribution. Then we would like to treat D = X − Y by the
Wilcoxon signed-rank test.
Historically, Wilcoxon proposed both the rank-sum test (for pooled
comparisons) and the signed-rank test (for paired comparisons) in a single
publication.
The signed-rank test requires a random variable to have a symmetric
distribution.
Recall that a random variable X is symmetric about a ∈ R if

X − a and − (X − a)

have the same distribution.
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Properties of D = X − Y

Now let X and Y be two independent random variables that follow the
same distribution but differ only in their location, i.e., X ′ := X − ‹ and Y
are independent and identically distributed.
Then

P [X − Y > ‹] = P [X − ‹ − Y > 0] = P [X ′ − Y > 0] =
1

2

so ‹ is the median of X − Y .
Furthermore,

D − ‹ = X − Y − ‹ = X ′ − Y

and
‹ −D = ‹ + Y − X = Y − X ′

have the same distribution since Y and X ′ are i.i.d. random variables.
Therefore, D is symmetric about its median ‹ and we can apply the
Wilcoxon signed rank test to test hypotheses about ‹.
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Paired vs. Pooled T -Tests
Let us take another look at the test statistics for a paired T -test. We note
that

D =
1

n

nX
i=1

(Xi − Yi )

=
1

n

nX
i=1

Xi −
1

n

nX
i=1

Yi

= X − Y

and —D = —X − —Y . This suggests that the paired and pooled T -test may
actually be fairly similar.
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Paired vs. Pooled T -Tests
For our comparison, let us assume that we have two populations of
normally distributed random variables X and Y with equal variances ff2.
We want to test

H0 : —X = —Y ;

and take a paired sample of equal size n from (X; Y ).
Then we could either perform a paired test or a pooled test – which is
more powerful? Let us compare the test statistics:

Tpooled =
X − Yq
2S2

p=n
; critical value = t¸=2;2n−2;

Tpaired =
X − Yq
S2
D=n

; critical value = t¸=2;n−1;
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Paired vs. Pooled T -Tests
We immediately note that

the pooled test has more degrees of freedom

and so rejecting H0 is easier - the test would be more powerful, if the test
statistics were equal.
But the test statistics differ:
I In the pooled test, the denominator contains

2S2
p=n which estimates 2ff2=n:

I In the paired test, the denominator contains

S2
D=n which estimates ff2

D=n = ff2
D
:
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Paired vs. Pooled T -Tests
To discuss the two denominators, we will compare

2ff2

n
with ff2

D
:

A direct calculation yields

ff2
D
= Var[D]

= Var[X − Y ]

= Var[X] + Var[Y ]− 2Cov[X; Y ]

=
ff2

n
+

ff2

n
− 2

ff2

n

Cov[X; Y ]q
Var[X]

q
Var[Y ]

=
2ff2

n
(1− ȷX Y )

where ȷXY is the correlation coefficient of X and Y .
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Correlation Coefficient of Sample Means
It is worth doing a quick calculation to verify that in our case (paired
samples)

ȷX Y = ȷXY :

Since the covariance is bilinear,

Cov[X; Y ] = Cov
h1
n

nX
i=1

Xi ;
1

n

nX
j=1

Yj
i

=
1

n2

nX
i=1

nX
j=1

Cov[Xi ; Yj ]

=
1

n2

nX
i=1

Cov[Xi ; Yi ]

where we have used that Xi and Yj are independent for i ̸= j .
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Correlation Coefficient of Sample Means
Then Cov[Xi ; Yi ] = Cov[X; Y ], so

Cov[X; Y ] =
1

n
Cov[X; Y ]:

and, therefore,

ȷX Y =
Cov[X; Y ]q

Var[X]
q
Var[Y ]

=
1
n Cov[X; Y ]p

Var[X]=n
p
Var[Y ]=n

=
Cov[X; Y ]p

Var[X]
p
Var[Y ]

= ȷXY :
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Paired vs. Pooled T -Tests
The upshot of all this is that

ff2
D
=

2ff2

n
(1− ȷXY ):

Therefore, if ȷXY > 0, the denominator of the paired statistic will be
smaller than that of the pooled statistic, leading to a larger value of the
statistic and a higher power of the test.
On the other hand, if ȷXY is zero (or even negative), then pairing is
intuitively unnecessary and in fact causes the test to lose power, since it is
easier to reject H0 when comparing with t¸=2;2n−2 than with t¸=2;n−1.

Pairing in the absence of positive correlation makes a test for
location less powerful.
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Estimating Correlation
Since correlation is important in deciding whether to use a paired or a
pooled T -test, let us briefly discuss the estimation of %.
Let us take a random sample of size n from (X; Y ) as before. Then we
have the natural unbiased estimators

\Var[X] =
1

n − 1

nX
i=1

(Xi − X)2;

\Cov[X; Y ] =
1

n − 1

nX
i=1

(Xi − X)(Yi − Y )

The natural choice (method of moments!) for an estimator for the
correlation coefficient is then

R := ȷ̂ =

P
(Xi − X)(Yi − Y )qP

(Xi − X)2
qP

(Yi − Y )2
: (24.1)
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Correlation of Bivariate Normal Random Variables
Now let us suppose that (X; Y ) follows a bivariate normal distribution, i.e.,
they have the joint density

fXY (x; y) =
1

2ıffXffY
p
1− %2

e
− 1

2(1−%2)

»“
x−—X
ffX

”2

−2%

“
x−—X
ffX

”“
y−—Y
ffY

”
+

“
y−—Y
ffY

”2
–

with —X ; —Y ∈ R, ffX ; ffY > 0 and correlation coefficient % ∈ (−1; 1).
Under this assumption, we will introduce a hypothesis test and a
confidence interval for the correlation coefficient.
An important role is played by the Fisher transformation (8.3).
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Hypothesis Tests for the Correlation Coefficient
It can be shown that for large n the Fisher transformation of R,

1

2
ln

„
1 + R

1− R

«
= Artanh(R)

is approximately normally distributed with

— =
1

2
ln

„
1 + %

1− %

«
= Artanh(%); ff2 =

1

n − 3
:

We can thus test H0 : % = %0, by using the test statistic

Z =

√
n − 3

2

„
ln

„
1 + R

1− R

«
− ln

„
1 + %0
1− %0

««
=
√
n − 3

`
Artanh(R)− Artanh(%0)

´ (24.2)
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Confidence Interval for the Correlation Coefficient
Furthermore, from (24.2) we can calculate a 100(1− ¸)% confidence
interval for %, given explicitly by"

1 + R − (1− R)e2z¸=2=
√
n−3

1 + R + (1− R)e2z¸=2=
√
n−3

;
1 + R − (1− R)e−2z¸=2=

√
n−3

1 + R + (1− R)e−2z¸=2=
√
n−3

#
:

or

tanh

„
Artanh(R)±

z¸=2√
n − 3

«
:
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Correlation as a Measure of Skill vs. Luck
24.5. Example. The article A Batting Average: Does It Represent
Ability or Luck? explores the suitability of a baseball player’s “batting
average” (BA for short; the number of hits divided by the number of
at-bats) as a measure of skill.
The premise is the following:
I If a good BA is a matter of skill, a player’s BA will have a consistent

value from one year to the next. We would expect the batting average
of a random player in one year to be linearly correlated to the BA in
the next year.

I If a good BA is a matter of luck, a player’s BA will vary from one year
to the next and the BA as a random variable in a given year will be
uncorrelated or even independent of the BA in another year.

We show the batting averages of all players with at least 100 at-bats in the
2002 and 2003 seasons on the next slide.

http://www-math.bgsu.edu/~albert/papers/paper_bavg.pdf
http://www-math.bgsu.edu/~albert/papers/paper_bavg.pdf
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Correlation as a Measure of Skill vs. Luck

Batting averages in the 2002 and 2003 baseball seasons. J. Albert. A Batting Average: Does It Represent Ability or Luck?

The article proposes that the “strikeout rate” is a better measure of skill.

http://www-math.bgsu.edu/~albert/papers/paper_bavg.pdf
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Correlation as a Measure of Skill vs. Luck
Indeed, the corresponding scattergram (for the same players) seems to
exhibit a stronger linear dependence from one year to the next:

Strikeout rates in the 2002 and 2003 baseball seasons. J. Albert. A Batting Average: Does It Represent Ability or Luck?

http://www-math.bgsu.edu/~albert/papers/paper_bavg.pdf
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25. Categorical Data
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Categorical Data
Problem: Instead of assuming numerical values, data may fall into
categories. Such data is called categorical data.

25.1. Example. Mars Corporation’s M&Ms are produced in different colors:
red, green, blue, brown, yellow and orange. If we pick a random M&M, it
will randomly have one of these colors.

Approach: Each member of a population falls into one of k given
categories with probability pi , 0 < pi < 1, i = 1; : : : ; n, and

p1 + p2 + · · ·+ pk = 1:

Our goal is to make inferences on the values of these pi .
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Categorical Random Variables
We suppose that a random variable X is given, where X can take on the
values 1; : : : ; k with respective probabilities p1 : : : ; pk as above. We say
that X is a categorical random variable

A random sample of size n from X is collected and the results are
expressed as a random vector

(X1; X2; : : : ; Xk) with X1 + X2 + · · ·+ Xk = n:

For example, a packet containing n = 14 M&M’s will yield a random
vector (Xred; Xgreen; : : : ; Xorange).

When k = 2, then the distribution governing the probability of an item
falling into category 1 (“success”) or category 2 (“failure”) is the binomial
distribution. For k > 2, we need to develop a new distribution.
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Multinomial Trials
25.2. Definition. A multinomial trial with parameters p1; : : : ; pk is a trial
that can result in exactly one of k possible outcomes. The probability that
outcome i will occur on a given trial is pi , for i = 1; : : : ; k .

25.3. Remark. It is clear from the definition that 0 ≤ pi ≤ 1, i = 1; : : : ; k ,
and p1 + · · ·+ pk = 1. To avoid unnecessary trivial cases, we assume
0 < pi < 1, i = 1; : : : ; k .
For k = 2, p1 = p and p2 = q = 1− p, we regain the classic Bernoulli trial.

A multinomial random variable now counts the number of times that
outcome i occurs when a fixed number of n i.i.d. multinomial trials is
performed. It therefore generalizes the binomial random variable.
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The Multinomial Distribution
25.4. Definition. A random vector ((X1; : : : ; Xk); fX1X2···Xk ) with

(X1; : : : ; Xk) : S → ˙ = {0; 1; 2; : : : ; n}k

and (joint) distribution function fX1X2···Xk : ˙ → R given by

fX1X2···Xk (x1; : : : ; xk) =
n!

x1! · · · xk !
px11 · · · p

xk
k ;

p1; : : : ; pk ∈ (0; 1), n ∈ N \ {0} is said to have a multinomial distribution
with parameters n and p1; : : : ; pk .

25.5. Remark. Of course, it would be sufficient to consider a k − 1
dimensional random variable, as one of the Xi is wholly determined by the
others. (The case k = 3 is handled by a bivariate, the case k = 2 by a
simple random variable.) For reasons of symmetry it is, however, worth
investing in the additional random variable.
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Expectation and Variance of the Multinomial Distribution
25.6. Theorem. Let ((X1; : : : ; Xk); fX1X2···Xk ) be a multinomial random
variable with parameters n and p1; : : : ; pk .

(i) The (marginal) expectations of the individual random variables Xi are
given by

E[Xi ] = npi ; i = 1; : : : ; k:

(ii) Var[Xi ] = npi (1− pi ), i = 1; : : : ; k ,
(iii) Cov[Xi ; Xj ] = −npipj , 1 ≤ i < j ≤ k.

While results (i) and (ii) are easy to see, the proof of (iii) requires some
work. Since we won’t need that result, it is left to you.



Categorical Data Slide 562

The Pearson Statistic
Hypothesis testing and statistical analysis are based on the following result,
which we will not prove:
25.7. Theorem. Let ((X1; : : : ; Xk); fX1X2···Xk ) be a multinomial random
variable with parameters n and p1; : : : ; pk . For large n the Pearson
statistic

kX
i=1

(Xi − npi )
2

npi
(25.1)

follows an approximate chi-squared distribution with k − 1 degrees of
freedom.
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The Pearson Statistic
A good way to memorize this statistic is to see that the Xi are the
“observed” frequencies and npi = E[Xi ] are the “expected” frequencies.
Writing Oi := Xi and Ei := E[Xi ], (25.1) becomes

kX
i=1

(Oi − Ei )
2

Ei

25.8. Remark. The number of degrees of freedom in Theorem 25.7 is equal
to the number of independent cells: given k cells and a total of n
multinomial trials, the number of results in the first k − 1 cells is random,
while the number of results in the final cell is completely determined by
these k − 1 results.
One could say that there are k − 1 independent cells, hence k − 1 degrees
of freedom.
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Cochran’s Rule
In the context of Theorem 25.7 we need to know how
large n needs to be for the chi-squared distribution to
be a good approximation to the true distribution of the
statistic (25.1).
Cochran’s Rule states that we should require

E[Xi ] = npi ≥ 1 for all i = 1; : : : ; k;

E[Xi ] = npi ≥ 5 for 80% of all i = 1; : : : ; k;

William G. Cochran (1909 – 1980).
Statisticians in History, Amstat News
(2016)

Especially if the pi are not approximately known beforehand, care needs to
be taken to ensure that the sample size n is sufficiently large so that these
criteria can apply.

https://magazine.amstat.org/blog/2016/09/22/sih-cochran/
https://magazine.amstat.org/blog/2016/09/22/sih-cochran/
https://magazine.amstat.org/blog/2016/09/22/sih-cochran/
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Fisher Test for Multinomial Distribution
We can then develop a statistical test for the hypothesis that a set of data
follows a given multinomial distribution: if data follows a given distribution,
the number of observed values in each category will be close to the
expected number and (25.1) will be small. Conversely, if (25.1) is large
and the observed data deviates from the expected data significantly, then
we have evidence that the data does not follow the presumed distribution.

This test will, by its nature, always be a Fisher test. Furthermore, it makes
no sense to use terms such as “two-sided” or “ones-sided” for the test,
since if some pi are larger than their null values, then some other pi will be
smaller than their null values.
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Test for Multinomial Distribution
25.9. Pearson’s Chi-squared Goodness-of-Fit Test. Let (X1; : : : ; Xk) be a
sample of size n from a categorical random variable with parameters
(p1; : : : ; pk) satisfying Cochran’s Rule Let (p10 ; : : : ; pk0) be a vector of null
values. Then the test

H0 : pi = pi0 ; i = 1; : : : ; k;

based on the statistic

X2
k−1 =

kX
i=1

(Xi − npi0)
2

npi0

is called an chi-squared goodness-of-fit test.
We reject H0 at significance level ¸ if X2

k−1 > ffl2
¸;k−1.
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Multinomial Statistics
25.10. Example. A computer scientist has developed an algorithm for
generating pseudorandom integers over the interval 0-9. He codes the
algorithm and generates 1000 pseudorandom digits. The data is shown
below:

i 0 1 2 3 4 5 6 7 8 9 n

Oi 94 93 112 101 104 95 100 99 94 108 1000
Ei 100 100 100 100 100 100 100 100 100 100 1000

We want to test whether these data conform to a discrete uniform
distribution on ˙ = {0; 1; 2; : : : ; 9}.
Formally, we test

H0 : The data follow a multinomial distribution

with parameters (p0; : : : ; p9) =

„
1

10
; : : : ;

1

10

«
.
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Multinomial Statistics
The observed test statistic is

9X
i=0

(Oi − Ei )
2

Ei
=

(94− 100)2

100
+ · · ·+ (108− 100)2

100
= 3:72

This statistic follows a chi-squared distribution with 10− 1 = 9 degrees of
freedom. Since ffl2

0:05;9 = 16:92, the P -value of the test is greater than 5%.
We decide not to reject H0.
We conclude that there is no evidence that the generated numbers are not
random.
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Goodness-of-Fit Test for a Discrete Distribution
The previous discussion centers on testing whether categorical data
conforms to a completely determined distribution, i.e., we compare
directly to a multinomial distribution. However, we can also use this
method to see whether data conforms to an arbitrary discrete or
continuous distribution.
Such a distribution will typically have one or more parameters, which we
also estimate from the given data. We also need to divide our data into
categories, so we can use our multinomial test. If we use our data to
estimate parameters of the distribution, the statistic

kX
i=1

(Oi − Ei )
2

Ei

will follow a chi-squared distribution with k − 1−m degrees of freedom,
where m is the number of parameters that we estimate.
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Goodness-of-Fit Test for a Discrete Distribution
25.11. Example. It is claimed that the number of defects in printed circuit
boards follows a Poisson distribution with unknown parameter k. We want
to determine if there is evidence that this claim is false.
A random sample of n = 60 printed boards has been collected and the
following number of defects observed:

Number of Observed
Defects X Frequency

0 32
1 15
2 9
3 4

The parameter k (which is also the mean) of the assumed Poisson
distribution is unknown and must be estimated from the data.
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Goodness-of-Fit Test for a Discrete Distribution
From Example 14.5 we know that a maximum-likelihood estimator for k is
the sample mean,

bk = X =
1

60
(32 · 0 + 15 · 1 + 9 · 2 + 4 · 3) = 0:75:

In order to apply the multinomial distribution, we first calculate

P [X = 0] =
e−bkbk0
0!

= 0:472

P [X = 1] =
e−bkbk1
1!

= 0:354

P [X = 2] =
e−bkbk2
2!

= 0:133

P [X ≥ 3] = 1− P [X = 0]− P [X = 1]− P [X = 2] = 0:041



Categorical Data Slide 572

Goodness-of-Fit Test for a Discrete Distribution
We can therefore replace the distribution of X with that of a categorical
random variable with parameters

(p0; p1; p2; p3) = (0:472; 0:354; 0:133; 0:041):

We calculate the expected frequencies Ei = npi as follows:

Number of Defects X Expected
(Category i) Frequency Ei

0 60 · 0:472 = 28:32
1 60 · 0:354 = 21:24
2 60 · 0:133 = 7:98
3 60 · 0:041 = 2:46

We see that E3 < 5 and since we have only four categories, this means
that more than 1 in 5 categories have an expected frequency smaller than
5. Since Cochran’s Rule is not satisfied, we may not apply Pearson’s test.
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Goodness-of-Fit Test for a Discrete Distribution
The problem can be solved by combining the last two categories:

Category i Exp. Frequency Ei Obs. Frequency Oi

0 28.32 32
1 21.24 15
2 10.44 13

The test

H0 : the number of defects follows a Poisson distribution
with parameter k = 0:75

is then equivalent to the test

H0 : the number of defects follows a multinomial distribution
with parameters (0:472; 0:354; 0:174)
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Goodness-of-Fit Test for a Discrete Distribution
For N = 3 categories, the statistic

X2 =
NX
i=1

(Oi − Ei )
2

Ei

then follows a chi-squared distribution with N − 1−m = 3− 1− 1 = 1
degree of freedom. Now

X2 =
(32− 28:32)2

28:32
+

(15− 21:24)2

21:24
+

(13− 10:44)2

10:44
= 2:94;

and the critical value for ¸ = 0:05 is ffl2
0:05;1 = 3:84. Since the observation

does not lie in the critical region, we are unable to reject H0 at the 5%
level of significance.
We can also test whether data fits a continuous distribution. In that case,
the division of the data range into categories is essentially arbitrary, as
illustrated in the following example.
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Goodness-of-Fit Test for a Continuous Distribution
25.12. Example. Consider again the data on Slide 292. Based on a
histogram, we had concluded that the data most likely comes from an
exponentially-distributed random variable and estimated the parameter ˛
on Slide 335.
Let us attempt to verify the exponential relationship. We test

H0 : the data follows an exponential distribution:

25.13. Remark. To perform a “clean” test, we should actually obtain new
data from the random variable. It is not good practice to eyeball the
distribution and then test the same data for that guessed distribution.
Effectively, the initial guess at the distribution represents an informal
hypothesis test. But for the purposes of this example, we ignore this issue.
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Goodness-of-Fit Test for a Continuous Distribution
We first need to define intervals on the real axis (representing our
“categories”) and then find the expected and observed number of data in
each category.
A common practice in constructing the class frequency distribution used in
the chi-squared goodness-of-fit test is to choose the category boundaries so
that the expected frequencies Ei = npi are equal for all categories. to use
this method, we want to choose the category boundaries a0; : : : ; ak for the
k categories so that all the probabilities

pi = P [ai−1 ≤ X ≤ ai ] =

Z ai

ai−1

f (x) dx

are equal.
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Finding the Categories
We will (arbitrarily) decide to use k = 10 categories for our n = 100 data.
If they are of equal probability weight, the probability of falling into each
category is pi = 1=10, i = 1; : : : ; 10, and the expected number of data in
each category is

Ei = n · pi = 10; i = 1; : : : ; 10:

We have estimated
ˆ̨ = 0:0087382:

Using Mathematica, the category boundaries are found to be

b[i_] := InverseCDF[ExponentialDistribution[β], 0.1*i] /. mom;

Table[b[i], {i, 0, 10}]

{0., 12.0575, 25.5365, 40.8179, 58.4589,

79.3238, 104.86, 137.783, 184.184, 263.508, ∞}
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Counting the Observations
BinCounts[Data, {Table[b[i], {i, 0, 10}]}]

{10, 8, 10, 9, 11, 11, 10, 13, 8, 10}

Category i Exp. Frequency Ei Obs. Frequency Oi

x < 12:0575 10 10
12:0575 ≤ x < 25:5365 10 8
25:5365 ≤ x < 40:8179 10 10
40:8179 ≤ x < 58:4589 10 9
58:4589 ≤ x < 79:3238 10 11
79:3238 ≤ x < 104:860 10 11
104:860 ≤ x < 137:783 10 10
137:783 ≤ x < 184:184 10 13
184:184 ≤ x < 263:508 10 8
263:508 ≤ x 10 10



Categorical Data Slide 579

Calculating the Significance of the Test
We calculate

X2 =
10X
i=1

(Oi − Ei )
2

Ei
= 2

and note that the statistic follows a chi-squared distribution with

‚ = k − 1−m = 10− 1− 1 = 8

degrees of freedom. We find a P -value of 98.1%:
1 - N[CDF[ChiSquareDistribution[8], 2]]

0.981012

We do not reject H0. There is no evidence that the data is not
exponentially distributed.
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Goodness-of-Fit Tests with Mathematica
The goodness-of-fit test is also implemented in Mathematica. However,
there is no control over the number of categories chosen; Mathematica will
always choose about 2n2=5 categories and ignore Cochran’s rule.
In our current example,
PearsonChiSquareTest[Data, ExponentialDistribution[β],

{"FittedDistributionParameters", "DegreesOfFreedom",

"TestDataTable"}]

{β  0.0087382}, 11,
Statistic P-Value

Pearson χ2 10.5 0.48605


We see that k = ⌈2 · 1002=5⌉ = 13 categories were used. The P -value is
different, but still large enough that H0 is not rejected.
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Goodness-of-Fit Tests with Mathematica
When testing for a discrete distribution, this is still done, so the test will
not always be reliable.
For instance, using the data from Example 25.11, we have

Mathematica uses k = ⌈2 · 602=5⌉ = 11 categories even though the data
only occurs in four categories and Cochran’s Rule isn’t satisfied.
The test statistic is the same as ours would have been, had we used all
four categories.
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Independence of Categorizations
The multinomial distribution and the Pearson statistic are also very useful
in another situation, best explained by an example:
25.14. Example. A researcher wants to study the relationship between
nightly hours of sleep and academic performance of students. A test group
of students fills out a questionnaire, giving their amount of sleep and their
current GPA score. The test group can then be divided as follows

{test group} = {< 6h sleep} ∪ {6-9h sleep} ∪ {> 9h sleep};

{test group} = {low GPA} ∪ {average GPA} ∪ {high GPA}

If academic performance and nightly sleep are not related to each other,
these categorizations will be independent, i.e., the likelihood of a student
falling into any of the GPA categories will not depend on which sleep
category the student is in.
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Contingency Tables
The data from the test group can be summarized in a contingency table
as follows:

< 6h sleep 6-9h sleep > 9h sleep
low GPA n11 n12 n13

average GPA n21 n22 n23
high GPA n31 n32 n33

Every member of the test group will count as 1 member of a specific cell
(table entry) and the cells list the number of members with the
corresponding properties. For example,

n23 = number of students with average GPA
and more than 9 hours of nightly sleep:
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r × c Contingency Tables; Marginal Sums
In general, we will treat situations where the contingency table has r rows
and c columns. We define the marginal row and column sums

ni · =
cX

j=1

ni j ; n·j =
rX

i=1

ni j :

In our example,

< 6h sleep 6-9h sleep > 9h sleep
low GPA n11 n12 n13 n1·

average GPA n21 n22 n23 n2·
high GPA n31 n32 n33 n3·

n·1 n·2 n·3 n
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Cell Probabilities and Independence
Suppose that
I pi j is the probability of falling into the cell of the ith row and the jth

column,
I pi · is the probability of falling anywhere in the ith row,
I p·j is the probability of falling anywhere in the jth column.

If the row and column categorizations are independent, then it should be
the case that

H0 : pi j = pi ·p·j ; i = 1; : : : ; r; j = 1; : : : ; c: (25.2)

We will therefore develop a test to determine whether there is statistical
evidence that (25.2) is false.
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Estimating the Probabilities
In principle, given n total sample elements, the number of elements in each
of the r · c cells follows a multinomial distribution with r · c − 1 independent
probabilities pi j . (Recall that the sum over all probabilities must equal 1,
so there are one fewer than r · c independently selectable parameters.)
However, if we assume pi j = pi ·p·j , then the multinomial distribution only
depends on the r − 1 + c − 1 parameters pi · and p·j . We will exploit this
for our test.
Natural estimates for the row and column probabilities are

cpi · = ni ·
n
; cp·j = n·j

n

so if (25.2) is assumed,

cpi j = cpi ·cp·j = ni ·n·j
n2
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Chi-Squared Test for Independence
Hence, if (25.2) is assumed, the expected number of elements in the
(i ; j)th cell is

Ei j = n · cpi j = ni ·n·j
n

We can now compare the observed frequencies Oi j in the (i ; j)th cell to the
expected frequencies Ei j . We will again use the Pearson statistic

X2
(r−1)(c−1) =

rX
i=1

cX
j=1

(Oi j − Ei j)
2

Ei j

which follows a chi-squared distribution with

k − 1−m = rc − 1− (r + c − 2) = rc − r − c + 1 = (r − 1)(c − 1)

degrees of freedom. We reject H0 if the value of X2
(r−1)(c−1) exceeds the

critical value of the corresponding chi-squared distribution.
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Testing for Independence
25.15. Example. A study performed in 2015 at the UM-SJTU Joint
Institute and the Sino-British College asked a total of 139 Chinese students
the following questions:

Question 1: “Who or what has had the most significant influence on the
ethical/moral values, attitudes, ideals, or approach to making ethical
judgments that you call upon when faced with a difficult situation?”

with possible answers

a) Religion b) Teachers c) Parents d) Friends e) Others

and

Question 2: “On a scale of 1-5 (one being the least and five being the
most), how likely do you think it is that you will be faced with ethical

issues or conflicts during your working life as an engineer?”
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Testing for Independence
The hypothesis to be tested is:
H0: For Chinese students studying in international engineering programs,
the source of ethical/moral values is independent of the expectation of

encountering ethical issues or conflicts.

The following data were obtained:

Expectation
Source 1 2 3 4 5 Totals
Religion 00.1 63.2 76.0 45.3 35.3 n1· = 20
Teachers 00.1 03.2 56.0 95.3 65.3 n2· = 20
Parents 10.4 79.0 1717.2 1515.2 1715.2 n3· = 57
Friends 00.2 64.6 118.8 77.7 57.7 n4· = 29
Others 00.1 32.1 23.9 23.5 63.5 n5· = 13

Totals n·1 = 1 n·2 = 22 n·3 = 42 n·4 = 37 n·5 = 37 n = 139
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Testing for Independence
The expected values in the preceding table have been calculated and
entered as small red figures. For example,

E33 =
57 · 42
139

= 17:2

We note immediately that many of the cells have an expected value
smaller than 5 and in fact there are cells with an expected value smaller
than 1. Therefore, Cochran’s Rule is not satisfied.
When designing this survey, it was not possible to predict how many
stduents would fall into each cell. This is such a common problem, that
there has been recent literature to re-evaluate Cochran’s Rule:

Literature: Kroonenberg, P. M. and Verbeek, A. The Tale of Cochran’s Rule: My
Contingency Table has so Many Expected Values Smaller than 5, What Am I to
Do?, The American Statistician, 72:2 (2018)
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Testing for Independence
For the purposes of this example, we will consolidate our table as follows:

Expectation
Source 1–2 3 4 5 Totals
Religion 63.3 76.0 45.3 35.3 n1· = 20
Teachers 03.3 56.0 95.3 65.3 n2· = 20
Parents 89.4 1717.2 1515.2 1715.2 n3· = 57

Friends & Others 96.9 1312.7 911.2 1111.2 n4· = 42

Totals n·2 = 23 n·3 = 42 n·4 = 37 n·5 = 37 n = 139

Now only two cells have an expectation less than 5 and Cochran’s rule is
satisfied. We find that

X2
9 = 8:594:

This corresponds to a P -value of close to 50%. We conclude that there is
no evidence that the source of ethical/moral guidance and the expectation
of encountering ethical conflicts in the future are not independent.
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Comparing Proportions
Finally, we note that a very similar, though subtly different approach can
be taken when comparing multiple proportions. Suppose that we would like
to compare the proportions students with little, average or much nightly
sleep among the JI ECE, JI ME, SJTU EE and SJTU ME majors. We
choose to randomly select (based on student IDs) n1·, n2·, n3· and n4·
students, respectively, from each of these majors.
We obtain the following contingency table:

< 6h sleep 6–9h sleep > 9h sleep
JI ECE n11 n12 n13 n1· (fixed)
JI ME n21 n22 n23 n2· (fixed)

SJTU EE n31 n32 n33 n3· (fixed)
SJTU ME n41 n42 n43 n4· (fixed)

n·1 n·2 n·3 n (fixed)
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Comparing Proportions
We again suppose that the number of objects in each cell is governed by
the multinomial distribution. However, since the row totals are now fixed,
only the number of objects in the first c − 1 columns can be independently
chosen, so we have a total of r · (c − 1) independent cells.
It is useful to rewrite the above table in terms of proportions:

< 6h sleep 6–9h sleep > 9h sleep
JI ECE p11 p12 p13 p1· = 1 (fixed)
JI ME p21 p22 p23 p2· = 1 (fixed)

SJTU EE p31 p32 p33 p3· = 1 (fixed)
SJTU ME p41 p42 p43 p4· = 1 (fixed)

We test

H0 :

8>><>>:
p11 = p21 = p31 = p41;

p12 = p22 = p32 = p42;

p13 = p23 = p33 = p43:
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Comparing Proportions
Supposing that H0 is true, we have the common proportions

pj := p1j = p2j = p3j = p4j ; j = 1; 2; 3;

where pj is also equal to the proportion of all objects following into the jth
column. An estimate for pj is

bpj = n·j
n
; j = 1; 2; 3: (25.3)

and bpj also serves as an estimator for all of the pi j , i = 1; : : : ; 4. If H0 is
true, the expected frequency in each cell is estimated by

Ei j = ni · bpj = ni ·n·j
n

and we can again apply the Pearson chi-squared test.
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Comparing Proportions
For the general case of r rows and c columns, the test

H0 : p1j = p2j = · · · = pr j ; j = 1; : : : ; c:

is called a test for homogeneity. When using the Pearson statistic, note
that the degrees of freedom are

r(c − 1)− (c − 1) = (r − 1)(c − 1)

where r(c − 1) is the number of independent cells and c − 1 is the number
of independent parameters bpj that are estimated in (25.3).
We note that the tests for independence and for homogeneity appear
absolutely the same in practice. That is not very surprising, since the null
hypotheses are logically equivalent.
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Introduction to Linear Regression
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26. Simple Linear Regression I:
Basic Model and Inferences
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Linear Regression
Linear regression: modeling the dependency of two variables using a linear
approach.
The term was originally used in the sense of regression to the mean in
biology. It was observed that certain extreme values of biological features
in members of a population are not necessarily passed on to descendants,
but that the descendants’ values of these features return to being closer to
the mean.
In general, measurements of a random variable tend to regress (= return)
to the mean value of the variable. Another way of putting this is that in
repeated measurements, fluctuations one way or the other tend to cancel
each other out.
We will see that this is the basic idea behind the statistical analysis of the
dependency of two random variables (known as a model).
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Kahnemann’s Example
I had the most satisfying Eureka experience of my ca-
reer while attempting to teach flight instructors that
praise is more effective than punishment for promot-
ing skill-learning.
When I had finished my enthusiastic speech, one of
the most seasoned instructors in the audience raised
his hand and made his own short speech […]. Kahneman, D. in 2004 (1913–)

File:Daniel KAHNEMAN.jpg. (2019,
September 14). Wikimedia Commons,
the free media repository.

He said, “On many occasions I have praised flight cadets for clean
execution of some aerobatic maneuver, and in general when they try it
again, they do worse. On the other hand, I have often screamed at cadets
for bad execution, and in general they do better the next time. So please
don’t tell us that reinforcement works and punishment does not, because
the opposite is the case.”

ttps://commons.wikimedia.org/w/index.php?title=File:Daniel_KAHNEMAN.jpg&oldid=365742917
ttps://commons.wikimedia.org/w/index.php?title=File:Daniel_KAHNEMAN.jpg&oldid=365742917
ttps://commons.wikimedia.org/w/index.php?title=File:Daniel_KAHNEMAN.jpg&oldid=365742917
ttps://commons.wikimedia.org/w/index.php?title=File:Daniel_KAHNEMAN.jpg&oldid=365742917
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Kahnemann’s Example
This was a joyous moment, in which I understood an important truth
about the world: because we tend to reward others when they do well and
punish them when they do badly, and because there is regression to the
mean, it is part of the human condition that we are statistically punished
for rewarding others and rewarded for punishing them.
I immediately arranged a demonstration in which each participant tossed
two coins at a target behind his back, without any feedback.
We measured the distances from the target and could see that those who
had done best the first time had mostly deteriorated on their second try,
and vice versa.
But I knew that this demonstration would not undo the effects of lifelong
exposure to a perverse contingency.

David Kahnemann received the 2002 Nobel Memorial Prize in Economic Sciences for his
work in behavioral economics and in the psychology of judgment and decision-making.
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Setting and Assumptions
We have:
I a dependent variable YYY , which we will assume to be a random

variable following a normal distribution. Y is often called the
response variable.

I an independent variable XXX, which we can assume to either be a
non-random parameter or a random variable measured precisely,
without any error or uncertainty. X is often called the predictor
variable or regressor.

We want to describe the behavior of Y as a function of the values of X,
i.e., of Y | x . We will therefore assume that there exists a certain model.
For most of this discussion, we will take the point of view that x is not
random while Y is a random variable following a normal distribution.



Simple Linear Regression I: Basic Model and Inferences Slide 604

Simple Linear Regression Model
In this section, we assume that the mean —Y |x of Y | x is given by

—Y |x = ˛0 + ˛1x for some ˛0; ˛1 ∈ R. (26.1)

This is called a simple linear regression model with model parameters
˛0 and ˛1.
Another way of writing this model is

Y | x = ˛0 + ˛1x + E

where E[E] = 0.
Our goal is to find estimators

B0 := b̨
0 = estimator for ˛0; b0 = estimate for ˛0;

B1 := b̨
1 = estimator for ˛1; b1 = estimate for ˛1;
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Residuals
We assume that we have a random sample of size n of pairs (X; Y ) or (if
we consider X to be a parameter and not a random variable) (x; Y | x).
For short, we write

Yi := Y | xi ; i = 1; : : : ; n;

so that we have a random sample (x1; Y1); : : : ; (xn; Yn).
For each measurement yi there exists a number ei , called the residual,
such that

Yi = b0 + b1xi + ei :

Our goal is to determine b0 and b1 based on minimizing the residuals in a
certain way.
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Least-Squares Estimation

In 1805, Adrien Legendre published an approach for min-
imizing the residuals by letting

e21 + e22 + · · ·+ e2n −→ minimum:

Gauß published the same method (with a deeper analysis)
in 1809 but claimed he had been using it since 1795.
This set off a bitter priority dispute between Legendre
and Gauß.

Adrien-Marie Legendre (1752–1833).
Boilly, Julien-Leopold. (1820). Album
de 73 Portraits-Charge Aquarelles des
Membres de IInstitute (watercolor
portrait # 29). Bibliotheque de lInstitut
de France.

In a letter, Gauß notes that previously Laplace had been using the approach

|e1|+ |e2|+ · · ·+ |en| −→ minimum

under the condition that e1 + e1 + · · ·+ en = 0.
Gauß then extensively analyzed the least-squares method.

https://commons.wikimedia.org/wiki/File:Legendre_and_Fourier_(1820).jpg
https://commons.wikimedia.org/wiki/File:Legendre_and_Fourier_(1820).jpg
https://commons.wikimedia.org/wiki/File:Legendre_and_Fourier_(1820).jpg
https://commons.wikimedia.org/wiki/File:Legendre_and_Fourier_(1820).jpg
https://commons.wikimedia.org/wiki/File:Legendre_and_Fourier_(1820).jpg
https://commons.wikimedia.org/wiki/File:Legendre_and_Fourier_(1820).jpg
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Least Squares Estimation
Given a sample of size n, we define the error sum of squares

SSE := e21 + e22 + · · ·+ e2n =
nX

i=1

`
yi − (b0 + b1xi )

´2
:

Since we determine the estimators for ˛0 and ˛1 by minimizing this sum of
squares, b0 and b1 are called least-squares estimates.
Assuming that Y | x follows a normal distribution with variance ff2

(independent of x) and mean b0 + b1x , Gauß proved that the least-squares
estimators have the smallest possible variance among all unbiased
estimators for b0 and b1.
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The Normal Equations
We consider SSE as a function of b0 and b1 and find the minimum by
calculating the partial derivatives:

@ SSE
@b0

= −2
nX

i=1

(yi − b0 − b1xi );

@ SSE
@b1

= −2
nX

i=1

(yi − b0 − b1xi )xi

Setting the derivatives equal to zero, we obtain the so-called normal
equations

nb0 + b1

nX
i=1

xi =
nX

i=1

yi ; b0

nX
i=1

xi + b1

nX
i=1

x2i =
nX

i=1

xiyi
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The Least Squares Estimates
These are linear equations for b0 and b1, which may be easily solved:

b1 =

n
nP

i=1
xiyi −

“ nP
i=1

xi
”“ nP

i=1
yi
”

n
nP

i=1
x2i −

“ nP
i=1

xi
”2 ; (26.2a)

b0 =
1

n

nX
i=1

yi − b1 ·
1

n

nX
i=1

xi : (26.2b)

Although these formulas are straightforward for explicit calculations, it is
worth re-writing them a little.
We will use the usual notation

x =
1

n

nX
i=1

xi and y =
1

n

nX
i=1

yi :
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The Least Squares Estimates
Then it is easy to see that

nX
i=1

(xi − x)(yi − y) =
nX

i=1

xiyi − y
nX

i=1

xi − x
nX

i=1

yi + n · x · y

=
1

n

“
n

nX
i=1

xiyi −
“ nX
i=1

xi
”“ nX

i=1

yi
””

For short, we will write

Sxx :=
nX

i=1

(xi − x)2; Syy :=
nX

i=1

(yi − y)2;

Sxy :=
nX

i=1

(xi − x)(yi − y):
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Practical Calculations
In practice, to simplify calculations using a calculator, we may use the
following relations:

Sxx =
nX

i=1

(xi − x)2 =
nX

i=1

x2i −
1

n

“ nX
i=1

xi
”2
;

Syy =
nX

i=1

(yi − y)2 =
nX

i=1

y2i −
1

n

“ nX
i=1

yi
”2
;

Sxy =
nX

i=1

(xi − x)(yi − y) =
nX

i=1

xiyi −
1

n

“ nX
i=1

xi
”“ nX

i=1

yi
”

and

b0 = y − b1x; b1 =
Sxy

Sxx
; SSE = Syy − b1Sxy : (26.3)
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Main Example for Simple Linear Regression
26.1. Example. Since humidity influences evaporation, the solvent balance
of water-reducible paints during spray-out is affected by humidity. A
controlled study is conducted to examine the relationship between humidity
(X) and the extent of solvent evaporation (Y ).
Knowledge of this relationship will be useful in that it will allow the painter
to adjust his or her spray gun setting to account for humidity.
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Main Example for Simple Linear Regression
The following data are obtained:

Observation x y Observation x y
1 35.3 11.0 14 39.1 9.6
2 27.7 11.1 15 46.8 10.9
3 30.8 12.5 16 48.5 9.6
4 58.8 8.4 17 59.3 10.1
5 61.4 9.3 18 70.0 8.1
6 71.3 8.7 19 70.0 6.8
7 74.4 6.4 20 74.4 8.9
8 76.7 8.5 21 72.1 7.7
9 70.7 7.8 22 58.1 8.5
10 57.5 9.1 23 44.6 8.9
11 46.4 8.2 24 33.4 10.4
12 28.9 12.2 25 28.6 11.1
13 28.1 11.9

Here x is the observed relative humidity (in %), y is the observed solvent
evaporation (in %).
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Main Example for Simple Linear Regression
We obtain

n = 25;
nX

i=1

xi = 1312:9;
nX

i=1

yi = 235:70;

nX
i=1

x2i = 76193:7;
nX

i=1

y2i = 2286:07;
nX

i=1

xiyi = 11802:2

Then, using the formulas (26.2), we have

b1 = b̨
1 = −0:0795; b0 = b̨

0 = 13:6:

Hence the estimated regression equation is

b—Y |x = 13:6− 0:0795x:

For example, the mean solvent evaporation at 50% relative humidity is
estimated to be 9.63%.
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Linear Regression with Mathematica
We use the data from Example 26.1 to illustrate how linear regression is
implemented:

Data is entered as a list of pairs (xi ; yi ) and the LinearModelFit

command takes as its arguments the data, the model (here: a linear model
in x) and the name of the variable (x).
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Linear Regression with Mathematica
model@"BestFit"D

13.6013 - 0.0794677 x
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Model Assumptions and Random Samples
26.2. Model Assumption.

(i) For each value of x , the random variable Y | x follows a normal
distribution with variance ff2 and mean —Y |x = ˛0 + ˛1x .

(ii) The random variables Y | x1 and Y | x2 are independent if x1 ̸= x2.

A random sample of size n consists of n pairs (xi ; Yi ), i = 1; : : : ; n, where
the random variables Yi = Y | xi are i.i.d. normal with variance ff2 and
mean —Y |xi = ˛0 + ˛1xi .

26.3. Remark. We do not require that xi ̸= xj . The random sample may
contain more than a single measurement of Y | xi . All the xi are treated in
the same way, e.g., when calculating x .
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Distribution of the Least Squares Estimators
26.4. Theorem. Given a random sample of Y | x of size n, the statistics

B1 − ˛1

ff=
qP

(xi − x)2
and B0 − ˛0

ff

r P
x2i

n
P

(xi−x)2

follow a standard normal distribution.
In particular, B0 and B1 are unbiased estimators.
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Distribution of the Least Squares Estimators
Proof.
We will prove the statement for the slope only. Since

nX
i=1

(xi − x) = 0

we may write

B1 =
1

Sxx

nX
i=1

(xi − x)(Yi − Y ) =
1

Sxx

nX
i=1

(xi − x)Yi (26.4)

Now B1 is a linear combination of the i.i.d. normally distributed Yi , so B1

itself follows a normal distribution.
It remains to show that B1 has mean ˛1 and variance ff2=

Pn
i=1(xi − x)2.
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Distribution of the Least Squares Estimators
Proof (continued).

E[B1] = E
h nX
i=1

xi − x

Sxx
Yi
i
=

nX
i=1

xi − x

Sxx
E[Yi ]

=
nX

i=1

(xi − x)(˛0 + ˛1xi )
nP

i=1
(xi − x)2

=
˛0

nP
i=1

(xi − x)2

nX
i=1

(xi − x)| {z }
=0

+˛1

nP
i=1

xi (xi − x)

nP
i=1

(xi − x)2| {z }
=1

= ˛1:
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Distribution of Least Squares Estimators
Proof (continued).
Similarly,

Var[B1] = Var
h nX
i=1

xi − x

Sxx
Yi
i
=

nX
i=1

(xi − x)2

S2
xx

Var[Yi ]

=
ff2“ nP

j=1
(xj − x)2

”2 nX
i=1

(xi − x)2

=
ff2Pn

i=1(xi − x)2
:

The proof of the corresponding statement for the estimator B0 is
completely analogous.
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Least Squares Estimator for the Variance
The variance ff2 of Y | x is assumed to be the same for all values of x . To
estimate it, we use the error sum of squares,

S2 :=
SSE
n − 2

=
1

n − 2

nX
i=1

(yi − b—Y |xi )
2 (26.5)

It turns out that this estimator is unbiased for ff2 and in fact

(n − 2)S2=ff2 =
SSE
ff2

follows a chi-squared distribution with n − 2 degrees of freedom.
Furthermore, it can be shown that S2 is independent of B0 and B1.
(Analogously to the statement that the sample mean is independent of the
sample variance, which we proved using the Helmert transformation.)
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Inferences on the Slope and the Intercept
Therefore,

(B1 − ˛1)=(ff=
√
Sxx)q

(n − 2)S2=[ff2(n − 2)]
=

B1 − ˛1

S=
√
Sxx

follows a T -distribution with n − 2 degrees of freedom.
The same is true for

(B0 − ˛0)=(ff
qP

x2k=
√
nSxx)q

(n − 2)S2=[ff2(n − 2)]
=

B0 − ˛0

S
qP

x2k=
√
nSxx

:

It follows immediately that we have 100(1− ¸)% confidence intervals

B1 ± t¸=2;n−2
S√
Sxx

; B0 ± t¸=2;n−2

S
qP

x2i√
nSxx

for ˛1 and ˛0, respectively.
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Confidence Intervals for Slope and Intercept
26.5. Example. We return to Example 26.1 of solvent evaporation in spray
painting. Recall that we obtained the point estimate for the regression line

b—Y |x = 13:6− 0:0795x:

Based on the previously calculated

n = 25;
X

xi = 1312:9;
X

yi = 235:70;X
x2i = 76193:7;

X
y2i = 2286:07;

X
xiyi = 11802:2

we obtain

Sxx = 7245:47; Syy = 63:89; Sxy = −575:781

and

SSE = Syy − b1Sxy = 18:13; s2 = SSE =(n − 2) = 0:79
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Confidence Intervals for Slope and Intercept
A 95% confidence interval for the slope of the regression line is given by

b1 ± t0:025;23s=
p
Sxx = −0:0795± 2:0687 · 0:888

85:12
= −0:0795± 0:0215

and a 95% confidence interval for the intercept is given by

b0 ± t0:025;23s

rX
x2i =

p
nSxx = 13:6± 1:19

These confidence intervals can also be obtained with Mathematica:
model@"ParameterConfidenceIntervals", ConfidenceLevel ® 0.95D

8812.41, 14.7927<, 8-0.101047, -0.0578881<<
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Tests for Regression Parameters
Of course, we may also perform hypothesis tests (Fisher or
Neyman-Pearson) on the model parameters. For example, we may test

H0 : ˛0 = ˛0
0 and H0 : ˛1 = ˛0

1

for null values ˛0
0 and ˛0

1 of the intercept and slope, respectively.
An important special case is following:
We say that a regression is significant if there is statistical evidence that
the slope ˛1 ̸= 0.
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Test for Significance of Regression
26.6. Test for Significance of Regression. Let (xi ; Y | xi ), i = 1; : : : ; n be a
random sample from Y | x . We reject

H0 : ˛1 = 0

at significance level ¸ if the statistic

Tn−2 =
B1

S=
√
Sxx

:

satisfies |Tn−2| > t¸=2;n−2.
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Significance of Regression
26.7. Example. We return to Example 26.1 of solvent evaporation in spray
painting. Recall that we obtained the point estimate for the regression line

b—Y |x = 13:6013− 0:07947x:

We now test whether the regression is significant. from the previously
calculated data, we have

t23 =
b1

s=
√
Sxx

= −7:61792:

We find that P [T23 ≤ −7:62] < 5 · 10−8.
Since this is a two-tailed test, P < 2 · 10−8 = 10−7.
Hence, we are able to reject H0. There is no evidence that the regression is
not significant.
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Tests for Regression Parameters
The key parameters for tests for ˛0 and ˛1 (vs. a null value of zero) may
also be extracted directly from Mathematica:

model["ParameterTable"]

Estimate Standard Error t-Statistic P-Value

1 13.6013 0.575896 23.6177 1.2532×10-17

x -0.0794677 0.0104317 -7.61792 9.82817 ×10-8
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Properties of the Estimator for the Mean
We now turn to the actual estimated mean, —Y |x . The least-squares
estimators give b—Y |x = B0 + B1x:

Since B0 and B1 are unbiased estimators for ˛0 and ˛1 it follows
immediately that b—Y |x is unbiased for —Y |x .

We may write

b—Y |x = B0 + B1x = Y − B1x + B1x = Y + B1(x − x):

Since B1 is a linear combination of the Yi (see (26.4)), this implies thatb—Y |x is also a linear combination of the Yi . The Yi are assumed independent
and normally distributed, so we see that b—Y |x follows a normal distribution.
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Distribution of the Estimated Mean
Since Cov[Y ; B1] = 0 (see assignments),

Var[b—Y |x ] = Var
ˆ
Y + (x − x)B1

˜
= Var[Y ] + (x − x)2 Var[B1]

=
ff2

n
+

(x − x)2ff2

Sxx
:

In conclusion, b—Y |x − —Y |x

ff
q

1
n + (x−x)2

Sxx

follows a standard-normal distribution.
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Confidence Interval the Estimated Mean
Using our estimator for the variance as before, we see that

b—Y |x − —Y |x

S
q

1
n + (x−x)2

Sxx

follows a T distribution with n − 2 degrees of freedom.
Based on this, we may make inferences on the value of the mean of Y | x .
For example, we obtain the following 100(1− ¸)% confidence interval for
—Y |x :

b—Y |x ± t¸=2;n−2S

s
1

n
+

(x − x)2

Sxx
: (26.6)
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27. Simple Linear Regression II:
Predictions and Model Analysis
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Inferences about a Single Predicted Value
We are interested in finding an “estimate” (guess) or a prediction for the
value of the random variable Y | x . Note the essential difference:
I An estimate is a statistical statement on the value of an unknown,

but fixed, population parameter.
I A prediction is a statistical statement on the value of an essentially

random quantity.
We define a 100(1− ¸)% prediction interval [L1; L2] for a random variable
X by

P [L1 ≤ X ≤ L2] = 1− ¸:

As a predictor [Y | x for the value of Y | x we use the estimator for the
mean, i.e., we set

[Y | x = b—Y |x = B0 + B1x:

In order to find a prediction interval, we need to analyze the distribution of
[Y | x .
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Inferences about a Single Predicted Value
Recall that b—Y |x follows a normal distribution with mean —Y |x and variance“
1
n + (x−x)2

Sxx

”
ff2. Furthermore, Y | x is normally distributed with mean

—Y |x and variance ff2.

Hence [Y | x − Y | x is normally distributed and, furthermore,

E[[Y | x − Y | x ] = —Y |x − —Y |x = 0;

Var[[Y | x − Y | x ] =
 
1

n
+

(x − x)2

Sxx

!
ff2 + ff2 =

 
1 +

1

n
+

(x − x)2

Sxx

!
ff2:

Thus, after standardizing and dividing by S=ff we obtain the Tn−2 random
variable

Tn−2 =
[Y | x − Y | x

S
q
1 + 1

n + (x−x)2

Sxx
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Inferences about a Single Predicted Value
We thus obtain the following 100(1− ¸)% prediction interval for Y | x :

[Y | x ± t¸=2;n−2S

s
1 +

1

n
+

(x − x)2

Sxx
(27.1)

The limits of the confidence interval (26.6) and the prediction interval
(27.1), plotted as functions of x , are commonly called confidence bands
and prediction bands for the regression.

x

Y x

Regression Line

Confidence Band

Predictioon Band
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Confidence and Prediction Intervals
27.1. Example. Continuing with the data from Example 26.1, Mathematica
gives confidence bands (26.6) for the estimated mean as

Prediction bands (27.1) are given by
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Confidence and Prediction Intervals
Below, the prediction bands are shown in red, while the confidence bands
for the estimated mean are green:
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Analysis of the Model
Achievements so far:
I Inferences on model parameters ˛0, ˛1.
I Inferences on estimated mean b—Y |x .
I Prediction for Y | x .

But is our linear model actually appropriate?

Crucial Quantities:
I The total variation of the response variable,

SST = Syy =
nX

i=1

(Yi − Y )2:

We will also call this the Total Sum of Squares. It represents the
variation of Y regardless of any model.
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Analysis of the Model
Crucial Quantities:
I The Error Sum of Squares

SSE =
nX

i=1

`
Yi − (b0 + b1xi )

´2
:

It represents the variation of Y that remains after we have applied the
model.
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Coefficient of Determination
Of course,

SSE ≤ SST

and we define the the coefficient of determination

R2 :=
SST−SSE

SST
: (27.2)

Sometimes, one reports R2 · 100%.
The coefficient R2 expresses the proportion of the total variation in YYY
that is explained by the linear model.
27.2. Example. Continuing with the data from Example 26.1, we find R2 as
follows:

model["RSquared"]

0.716164
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Connection to Correlation
Recall from (26.3) that

SSE = Syy − B1Sxy = Syy −
S2
xy

Sxx
;

so that
R2 =

SST−SSE
SST

=
S2
xy

SxxSyy
:

The right-hand side is exactly the square of the estimator (24.1) for the
the correlation coefficient ȷXY .
Since the correlation %XY measures the linearity of the relationship between
X and Y , this is not surprising.
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Connection to Significance of Regression
Using again (26.3), we can have a other look at the statistic that we had
used in the Test for Significance of Regression 26.6,

Tn−2 =
B1q

S2=Sxx

=
Sxy=Sxxp

SSE =[(n − 2)Sxx ]

=
R√

1− R2

√
n − 2; (27.3)

and we can see that is expressible entirely using the coefficient R2.
Hence, R2 alone includes enough information to conduct the test for
significance of regression.
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Connection of the T and F Distributions
Recall that a T‚ distribution is the quotient of a standard normal
distribution and the square root of a chi-squared distribution with ‚
degrees of freedom, divided by ‚.
Then the square of T‚ ,

T 2
‚ =

Z2

ffl2
‚=‚

=
ffl2
1=1

ffl2
‚=‚

= F1;‚

follows an F distribution with 1 and ‚ degrees of freedom.
Therefore, we may also use the statistic

F1;n−2 = (n − 2)
R2

1− R2
= (n − 2)

SST−SSE
SSE

to test for significance of regression.
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F Test for Significance of Regression
27.3. Test for Significance of Regression. Let (xi ; Yi ), i = 1; : : : ; n be a
random sample from Y | x . We reject

H0 : ˛1 = 0

at significance level ¸ if the statistic

F1;n−2 = (n − 2)
R2

1− R2
= (n − 2)

SST−SSE
SSE

: (27.4)

satisfies F1;n−2 > f¸;1;n−2.
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ANOVA Table for Simple Linear Regression
27.4. Example. For the data of Example 26.1, we can obtain the Analysis
of Variance (ANOVA) table for the regression:

model["ANOVATable"]

DF SS MS F-Statistic P-Value

x 1 45.756 45.756 58.0328 9.82817 ×10-8

Error 23 18.1344 0.788452
Total 24 63.8904

Here
I “DF” stands for “degrees of freedom”
I “SS” stands for “sum of squares”
I “MS” stands for “mean square” and is SS/DF
I The F -Statistic is the value of F1;n−2 in (27.4) and the P -value refers

to the Test 27.3.
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ANOVA Table for Simple Linear Regression
model["ANOVATable"]

DF SS MS F-Statistic P-Value

x 1 45.756 45.756 58.0328 9.82817 ×10-8

Error 23 18.1344 0.788452
Total 24 63.8904

We can read off
I SST = 63:8904; compare with Syy in Example 26.5
I SSE = 18:1344; compare with Example 26.5
I F1;23 = 58:0328 = T 2

23; compare with the value for T23 obtained in
Example 26.7.

I The P -value of the test for significance of regression is the same as for
the T -test in Example 26.7.
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Test for Correlation
Conversely, we can adapt the above discussion to perform a two-sided
Fisher test for a vanishing correlation in a bivariate normal distribution:

27.5. Test for Correlation. Let (X; Y ) follow a bivariate normal distribution
with correlation coefficient % ∈ (−1; 1). Let R be the estimator (24.1) for
%. Then

H0 : % = 0

is rejected at significance level ¸ if˛̨̨̨
˛R
√
n − 2√

1− R2

˛̨̨̨
˛ > t¸=2;n−2:
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Lack-of-Fit and Pure Error
Problem:
I R2 measures how much of the total variation is explained by the linear

model.
I If R2 is not large, then the model does not explain a significant

amount of the fluctuation of the measured values yi .
I In short, SSE is large.

Why could SSE be large?

I Either ff2 is very large (pure error)
I or the model is wrong. (lack-of-fit error)

To tell which of the two predominates, we need to be able to take
repeated measurements of Y | xi for the same value of xi .
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Repeated Measurements
We can directly measure pure error (due to ff2) if we have repeated
measurements available. That is, at one or more points xi , i = 1; : : : ; k ,
we have at least two observations on Y .
Let Yi j denote the jth observation of Y | xi , where j = 1; : : : ; ni .
The total number of observations is

n = n1 + n2 + · · ·+ nk =
kX

i=1

ni :

Recall: Repeated measurements are treated just like any other
measurements in regression analysis.
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Internal Sum of Squares
For each i = 1; : : : ; k we can view Yi1; Yi2; : : : ; Yini as a random sample of
size ni of the random variable Yi = Y | xi .
An unbiased estimator for —Y |xi is the sample mean

Y i =
1

ni

niX
j=1

Yi j :

The statistic
niX
j=1

(Yi j − Y i )
2

measures the natural variability of Y | xi and is called an internal sum of
squares.
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Error Sum of Squares (Pure Error)
By summing over all internal sums of squares we obtain the error sum of
squares due to pure error,

SSE;pe :=
kX

i=1

niX
j=1

(Yi j − Y i )
2 (27.5)

=
kX

i=1

niX
j=1

Y 2
i j −

kX
i=1

1

ni

“ niX
j=1

Yi j
”2

It is not difficult to see that

1

ff2
SSE;pe =

kX
i=1

1

ff2

niX
j=1

(Yi j − Y i )
2

follows a chi-squared distribution with n − k degrees of freedom.
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Error Sum of Squares
Note that SSE;pe ≤ SSE since

SSE =
kX

i=1

niX
j=1

`
Yi j − (b0 + b1xi )

´2
and in general

niX
j=1

`
Yi j − z

´2
is minimized if z = Y i .
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Error Sum of Squares (Lack of Fit)
We therefore define the error sum of squares due to lack of fit by

SSE;lf := SSE−SSE;pe :

Since SSE = SSE;pe +SSE;lf, it seems reasonable that

1

ff2
SSE;lf

might follow a chi-squared distribution with

(n − 2)− (n − k) = k − 2

degrees of freedom.
In fact, it can be shown that this is true and that SSE;lf is actually a sum
of squares.
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Testing for Lack of Fit
27.6. Test for Lack of Fit. Let x1; : : : ; xk be regressors and Yi1; Yi2; : : : ; Yini ,
i = 1; : : : ; k , the measured responses at each of the regressors. Let SSE;pe
and SSE;lf be the pure error and lack-of-fit sums of squares for a linear
regression model. Then

H0 : the linear regression model is appropriate

is rejected at significance level ¸ if the test statistic

Fk−2;n−k =
SSE;lf =(k − 2)

SSE;pe =(n − k)

satisfies Fk−2;n−k > f¸;k−2;n−k .
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Testing for Lack of Fit
27.7. Example. Consider these data on X, the temperature, in degrees
centigrade, at which a chemical reaction is conducted, and Y , the
percentage yield obtained:

xi 30 40 50 60 70
Yi1 13.7 15.5 18.5 17.7 15.0
Yi2 14.0 16.0 20.0 18.1 15.6
Yi3 14.6 17.0 21.1 18.5 16.5

Here k = 5, n1; : : : ; n5 = 3 and n = 15. For x1 = 30 we have y1 = 14:1
and the internal sum of squares

(13:7− 14:1)2 + (14:0− 14:1)2 + (14:6− 14:1)2 = 0:42

In the same way we calculate the other four internal sums of squares and
obtain the pure error sum of squares

SSE;pe = 6:453:
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Testing for Lack of Fit
For our data we can calculate Syy = 66:6437, Sxy = 154 and b1 = 0:051.
The total error sum of squares is given by

SSE = Syy − b1Sxy = 58:583:

The lack-of-fit sum of squares is

SSE;lf = SSE−SSE;pe = 52:13:

The observed value of the statistic is

Fk−2;n−k = F3;10 =
SSE;lf =(k − 2)

SSE;pe =(n − k)
=

52:13=3

6:453=10
= 26:928:

Based on the F3;10 distribution, we can reject H0 with P < 0:05
(f0:05;3;10 = 3:708). There is evidence that a linear regression model is not
appropriate.
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Testing for Lack of Fit
It is clear from the graph below that the linear model is indeed not suitable:
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Residual Analysis
The residuals ei , i = 1; : : : ; n give important information on the model:
I Are they consistent with the assumption of equal variance ff2?
I Are they consistent with the assumption of a normal distribution?
I Does the linear model seem appropriate?

Plotting the residuals vs. the values of xi also shows potential gaps in the
data.

Never extrapolate the regression model beyond the range of the
regressors. Avoid leaving wide gaps in the range of the xixixi .
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Residual Analysis
27.8. Example. Continuing with the data from Example 26.1, Mathematica
gives the residuals as follows
residuals = model@"FitResiduals"D

80.203884, -0.300071, 1.34628, -0.528625, 0.577991, 0.764721,
-1.28893, 0.993847, -0.182959, 0.0680671, -1.71402, 0.895291,
0.531716, -0.894139, 1.01776, -0.147142, 1.21111, 0.0614135, -1.23859,
1.21107, -0.171704, -0.484252, -1.15707, -0.547105, -0.22855<

A boxplot does not yield strong evidence against the normality assumption:

-2 -1 0 1 2
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Residual Analysis
The residual plot does not show any obvious issues:

xi

-2

-1

1

2

ei
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The Anscombe Quartet

Francis J. Anscombe (1918–2001).
Boilly, Julien-Leopold. (1820). Yale
Bulletin and Calendar. November 2,
2001. Vol. 30, No. 9

I x = 9,
I 1

n−1Sxx = 11,
I y = 7:50,
I 1

n−1Syy = 4:122 or 4:127,
I R2 = 0:816,
I b—Y |x = 3:00 + 0:500x

Finally, this example by Francis Anscombe illustrates why it is always
important to actually look at the data instead of relying on numerical
quantities. In the following four graphs, the data all have these same
statistics up to the precision given.
Literature: Anscombe, F. J. Graphs in Statistical Analysis. American Statistician. 27
(1): 17–21. (1973).

http://archives.news.yale.edu/v30.n9/story11.html
http://archives.news.yale.edu/v30.n9/story11.html
http://archives.news.yale.edu/v30.n9/story11.html
http://archives.news.yale.edu/v30.n9/story11.html
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Plot the data!
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28. Multiple Linear Regression I: Basic Model
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More General Regression Models
Two Main Generalizations:
I The multilinear model with linear dependence on p ∈ N parameters

X1; : : : ; Xp,

—Y |x1;:::;xp = ˛0 + ˛1x1 + · · ·+ ˛pxp (28.1)

and
I The polynomial model with dependence on a polynomial of degree p

of a single parameter X,

—Y |x = ˛0 + ˛1x + ˛2x
2 + · · ·+ ˛px

p:
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The Polynomial Model
A random sample of size n, (xi ; Y | xi ), i = 1; : : : ; n is given. We write
Yi := Y | xi as usual.
Goal: Find b0; : : : ; bp such that for

yi = b0 + b1xi + · · ·+ bpx
p
i + ei ; i = 1; : : : ; n; (28.2)

the sum of squares error

SSE =
nX

i=1

e2i =
nX

i=1

`
yi − (b0 + b1xi + · · ·+ bpx

p
i )
´2 (28.3)

is minimized.
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The Model Specification Matrix
To discuss the model

Yi = Y | xi = ˛0 + ˛1xi + ˛2x
2
i + · · ·+ ˛px

p
i + Ei ; (28.4)

it is convenient to adopt a matrix formalism. We define

Y =

0B@Y1
...
Yn

1CA ; X =

0B@1 x1 x21 : : : xp1
... ... ... . . . ...
1 xn x2n : : : xpn

1CA ; ˛ =

0B@˛0
...
˛p

1CA ; E =

0B@E1
...
En

1CA :

Then (28.4) can be written as

Y = X˛ + E: (28.5)

The matrix X is called the model specification matrix. We see from
(28.5) that the polynomial model is a linear regression model.
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Polynomial Regression
Defining

b̨ = b :=

0B@b0
...
bp

1CA and e =

0B@e1
...
en

1CA
(28.2) becomes

Y = Xb + e;

where b is chosen to minimize the error sum of squares

SSE = ⟨Y − Xb; Y − Xb⟩ = (Y − Xb)T (Y − Xb): (28.6)

Here AT denotes the transpose of a matrix A and ⟨a; b⟩ =Pn
i=1 aibi is the

usual scalar product of two vectors a; b ∈ Rn.
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Minimizing the SSE
Using the norm ∥a∥ =

p
⟨a; a⟩, we write

SSE = ⟨Y − Xb; Y − Xb⟩
= ∥Y ∥2 − 2⟨Xb; Y ⟩+ ∥Xb∥2:

The minimum of the sum-of-squares error is found from

∇b SSE =

0BB@
@ SSE
@b0...
@ SSE
@bp

1CCA = 0:

Hence, we need to solve

−2∇b⟨Xb; Y ⟩+∇b⟨Xb; Xb⟩ = 0:
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Minimizing the SSE
We use that

⟨Xb; Y ⟩ = ⟨b; XTY ⟩ =
pX

i=0

bi (X
TY )i+1

to see
@

@bk
⟨Xb; Y ⟩ = (XTY )k+1:

and hence

∇b⟨Xb; Y ⟩ =

0BB@
@⟨Xb;Y ⟩

@b0...
@⟨Xb;Y ⟩

@bp

1CCA =

0B@ (XTY )1
...

(XTY )p+1

1CA = XTY :

It is also not difficult to show that

∇b⟨Xb; Xb⟩ = 2XTXb:
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The Regression Coefficients
It follows that the stationary point is given by

(XTX)b = XTY :

Since the entries of X are numerical, XTX will almost surely be invertible.
Then the regression coefficients are given by

b = (XTX)−1XTY :

Of course, this formulation can also be used for simple linear regression;
this is just the case p = 1.
Since the values in X are numerical, practical calculations are best done
using a computer.
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A Polynomial Model
28.1. Example. A study is conducted to develop an equation by which the
unit cost of producing a new drug (Y ) can be predicted based on the
number of units produced (X). The proposed model is

—Y |x = ˛0 + ˛1x + ˛2x
2:

The following data are available:

x 5 5 10 10 15 15 20 20 25 25
y 14.0 12.5 7.0 5.0 2.1 1.8 6.2 4.9 13.2 14.6

We will use Mathematica for our calculations. We first enter the data as a
list of pairs:

data = 885, 14<, 85, 12.5<, 810, 7.<, 810, 5.<, 815, 2.1<,
815, 1.8<, 820, 6.2<, 820, 4.9<, 825, 13.2<, 825, 14.6<<;
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A Polynomial Model
We construct the model specification matrix X and the response vector y :

y = Transpose@dataD@@2DD;

X = TransposeATableAFunctionAx, xkE ��

Transpose@dataD@@1DD, 8k, 0, 2<EE;

8MatrixForm@XD, MatrixForm@yD<

:

1 5 25

1 5 25

1 10 100

1 10 100

1 15 225

1 15 225

1 20 400

1 20 400

1 25 625

1 25 625

,

14

12.5

7

5

2.1

1.8

6.2

4.9

13.2

14.6

>
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A Polynomial Model
Then b is given by

b = Inverse@Transpose@XD.XD.Transpose@XD.y;
MatrixForm@bD

27.3

-3.313

0.111

Thus we obtain

—̂Y |x = 27:3− 3:313 · x + 0:111 · x2:

The same result can also be found by using NonLinearModelFit:
model = NonlinearModelFit@data, b0 + b1 x + b2 x^2,

8b0, b1, b2<, xD;
model@"BestFit"D

27.3 - 3.313 x + 0.111 x2
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A Polynomial Model
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A Polynomial Model
We can also use LinearModelFit with a given model specification matrix
X (called a design matrix in Mathematica) and the response vector y :

model = LinearModelFit@8X, y<D;
model@"BestFit"D

27.3 ð1 - 3.313 ð2 + 0.111 ð3

The output is a “pure function” with three arguments. To obtain the
desired expression, we need to insert the appropriate monomials:

Evaluate@model@"BestFit"DD &A1, x, x2E

27.3 - 3.313 x + 0.111 x2
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The Multilinear Model
In the mulilinear model, we assume that Y depends on several factors
x1; : : : ; xp,

Y | x = ˛0 + ˛1x1 + ˛2x2 + · · ·+ ˛pxp + E:

We take a random sample (x1i ; x2i ; : : : ; xpi ; Y | x1i ; x2i ; : : : ; xpi ),
i = 1; : : : ; n, writing Yi = Y | x1i ; x2i ; : : : ; xpi as usual.
We select b0; : : : ; bp such that for

yi = b0 + b1x1i + · · ·+ bpxpi + ei ; i = 1; : : : ; n; (28.7)

the sum of squares error

SSE =
nX

i=1

e2i =
nX

i=1

`
yi − (b0 + b1x1i + · · ·+ bpxpi )

´2 (28.8)

is minimized.
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The Multilinear Model
In fact, the situation is identical to the polynomial model if the model
determination matrix X is replaced by

X =

0B@1 x11 : : : xp1
... ... . . . ...
1 x1n : : : xpn

1CA :

We again have
Y = X˛ + E:

and estimate ˛ by minimizing

SSE = (Y − Xb)T (Y − Xb): (28.9)

All following calculations remain unchanged and we obtain

b = (XTX)−1XTY :
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A Multilinear Model
28.2. Example. An equation is to be developed from which we can predict
the gasoline mileage of an automobile based on its weight and temperature
at the time of operation. The model being estimated is

—Y |x = ˛0 + ˛1x1 + ˛2x2:

These data are available:
Car number 1 2 3 4 5 6 7 8 9 10

Weight in tons (x1) 1.35 1.90 1.70 1.80 1.30 2.05 1.60 1.80 1.85 1.40
Temp. in ◦F (x2) 90 30 80 40 35 45 50 60 65 30
Miles/Gallon (y) 17.9 16.5 16.4 16.8 18.8 15.5 17.5 16.4 15.9 18.3

We enter the data as follows:
rowdata :=

881.35, 1.90, 1.70, 1.80, 1.30, 2.05, 1.60, 1.80, 1.85, 1.40<,
890, 30, 80, 40, 35, 45, 50, 60, 65, 30<,
817.9, 16.5, 16.4, 16.8, 18.8, 15.5, 17.5, 16.4, 15.9, 18.3<<
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A Multilinear Model
We construct the specification matrix and response vector before obtaining
the model parameters:

X = Transpose@8Table@1, 8i, 1, Length@rowdata@@1DDD<D,
rowdata@@1DD, rowdata@@2DD<D;

y = rowdata@@3DD;
8MatrixForm@XD, MatrixForm@yD<

:

1 1.35 90

1 1.9 30

1 1.7 80

1 1.8 40

1 1.3 35

1 2.05 45

1 1.6 50

1 1.8 60

1 1.85 65

1 1.4 30

,

17.9

16.5

16.4

16.8

18.8

15.5

17.5

16.4

15.9

18.3

>



Multiple Linear Regression I: Basic Model Slide 683

A Multilinear Model
b = Inverse@Transpose@XD.XD.Transpose@XD.y; MatrixForm@bD

24.7489

-4.15933

-0.014895

We could also have used LinearModelFit based on the model
specification matrix,

model = LinearModelFit@8X, y<D;
Evaluate@model@"BestFit"DD &@1, x1, x2D

24.7489 - 4.15933 x1 - 0.014895 x2

or entered the data directly in the form of a list of triples (x1; x2; y),
data = Transpose@8a1, a2, y<D;
model = LinearModelFit@data, 8x1, x2<, 8x1, x2<D;
model@"BestFit"D

24.7489 - 4.15933 x1 - 0.014895 x2



Multiple Linear Regression I: Basic Model Slide 684

A Multilinear Model
The model gives a regression plane:
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Error Analysis: Total Variation
Let us now analyze the sources of variation in our models. The total
variation is given by

SST =
nX

i=1

(Yi − Y )2

It is convenient to express this in matrix notation: we define the n × n
matrix

P :=
1

n

0B@1 1 : : : 1
... ... ...
1 1 : : : 1

1CA :

Then it is easy to see that

PY =

0B@Y...
Y

1CA :
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Error Analysis: The P Projection
This allows us to write

SST = ⟨(1n − P )Y ; (1n − P )Y ⟩

where 1n is the n × n unit matrix. We further remark that

P 2 = P; and P T = P: (28.10)

A matrix with the properties (28.10) is said to be an orthogonal
projection. We can easily check that (28.10) implies

(1n − P )2 = 1n − P; and (1n − P )T = 1n − P:

Then

SST = ⟨Y ; (1n − P )T (1n − P )Y ⟩ = ⟨Y ; (1n − P )Y ⟩ (28.11)

Such an expression is called a quadratic form in Y .
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The Hat Matrix
Recall that our both the polynomial and the multilinear models were based
on writing the n responses in the form

Y = Xb + e

where e is the least-squares vector of residuals and Y = (Y1; : : : ; Yn)
T is

the vector of the responses.

The vector

bY := Xb

then represents the predicted val-
ues of the responses, i.e., the
points bYi lying on the regression
curve at xi .

Yi Y i

x

Y x
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The Hat Matrix
Since b = (XTX)−1XTY we may write

bY = HY ; H := X(XTX)−1XT ;

where the n × n matrix H is called the hat matrix. It associates to each
measured response Yi the predicted response bYi .
Like P , the hat matrix is an orthogonal projection: we can check that

HX = X; HT = H; H2 = H:

Therefore, so is 1n −H and we have

(1n −H)X = 0; (1n −H)T = 1n −H; (1n −H)2 = 1n −H: (28.12)
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Error Analysis: Sum of Squares Error
We may therefore write the error sum of squares as

SSE = ⟨Y − Xb; Y − Xb⟩
= ⟨(1n −H)Y ; (1n −H)Y ⟩
= ⟨Y ; (1n −H)T (1n −H)Y ⟩
= ⟨Y ; (1n −H)Y ⟩:

We may therefore write out a sums of squares decomposition very easily:

SST = ⟨Y ; (1n − P )Y ⟩
= ⟨Y ; (1n −H)Y ⟩| {z }

=SSE

+ ⟨Y ; (H − P )Y ⟩| {z }
=:SSR

:
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Fundamental Sum-of-Squares Decomposition
We hence have the decomposition

SST = SSR +SSE (28.13)

where
(i) SST represents the total variation of the response variable Y ,
(ii) SSR (called the regression sum of squares) represents the variation

of the response predicted by the regression model and
(iii) SSE represents the deviation of the response from the model.

Analogously to (27.2), the coefficient of multiple determination,

R2 =
SSR
SST

gives the proportion of the response variation in Y explained by the model.
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Fundamental Sum-of-Squares Error Decomposition
28.3. Remark. It can be shown that

SSR = ⟨Y ; (H − P )Y ⟩ = ⟨(H − P )Y ; (H − P )Y ⟩:

Then the equation

SST = SSR +SSE (28.14)

may be expressed as
nX

i=1

(Yi − Y )2 =
nX

i=1

(bYi − Y )2 +
nX

i=1

(Yi − bYi )2
with bY = Xb. Proving this inequality using only elementary algebraic
manipulations is a daunting task.
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Fundamental Sum-of-Squares Error DecompositionX
(yellow lengths)2 =
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29. Multiple Linear Regression II:
Inferences on the Model
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Distribution of the Sum of Squares Error
Model assumptions:
I Y | x follows a normal distribution with variance ff2 and mean given

by the model.
I Y | x is independent of Y | x ′ for x ̸= x ′.

(Here x may be a vector of several different factors or a single factor.)
Goal: Find the distribution of the error sum of squares

SSE = ⟨Y ; (1n −H)Y ⟩

where Y = (Y1; : : : ; Yn) is the response vector and

H := X(XTX)−1XT

is the hat matrix. Here X is the (p + 1)× n model specification matrix.
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Trace of 1n −H

We first need a basic result from linear algebra:
29.1. Lemma. Let P : Rn → R

n be a projection, i.e., P 2 = P . Then the
eigenvalues of P may only have values of 0 or 1.

Proof.
Suppose that Pv = –v for some v ∈ Rn, v ̸= 0, and – ∈ R. Then

–v = Pv = P 2v = P (Pv) = P (–v) = –(Pv) = –2v

so – = –2, i.e., – = 0 or – = 1.
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Trace of 1n −H
Recall that the trace of a square n × n matrix A = (ai j) is defined as

trA :=
nX

i=1

ai i :

We will use the properties
tr(A+ B) = trA+ trB; tr(AB) = tr(BA)

for square n × n matrices A;B. Furthermore,
trA = sum of the eigenvalues of A:

We have
trH = tr(X(XTX)−1XT ) = tr((XTX)−1XTX)

= tr(1p+1) = p + 1:

so
tr(1n −H) = tr 1n − trH = n − p − 1
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Eigenvalues of 1n −H

Since 1n −H is a projection, the sum of its eigenvalues is also equal to the
number of eigenvalues that equal 1.
Hence, n − p − 1 eigenvalues of 1n −H are equal to 1 and p + 1
eigenvalues equal 0.
Since 1n −H is symmetric, we can apply the spectral theorem of linear
algebra: there exists a matrix U (whose columns are eigenvectors of
1n −H) such that

U−1 = UT

and

UT (1n −H)U =

 
1n−p−1 0

0 0

!
=: Dn−p−1 (29.1)
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Distribution of the Sum of Squares Error
Recall that in our model the response vector satisfies

Y = X˛ + E

where E follows a normal distribution with mean 0 and variance ff2.
Since 1n −H is an orthogonal projection and (1n −H)X = 0 (see (28.12))
and we find

SSE = ⟨(1n −H)Y ; (1n −H)Y ⟩
= ⟨(1n −H)(X˛ + E); (1n −H)(X˛ + E)⟩
= ⟨(1n −H)E; (1n −H)E⟩
= ⟨E; (1n −H)E⟩
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Distribution of the Sum of Squares Error
Since each Ej follows an independent normal distribution with mean zero
and variance ff2, we have

SSE
ff2

=

fi
E

ff
; (1n −H)

„
E

ff

«fl
= ⟨Z; (1n −H)Z⟩

where Z = (Z1; : : : ; Zn)
T is a vector of i.i.d. standard normal random

variables.
We now use the diagonalization (29.1),

SSE
ff2

= ⟨Z; UDn−p−1U
TZ⟩ = ⟨UTZ;Dn−p−1U

TZ⟩

=
n−p−1X
i=1

(UTZ)2i

Since each Zj follows an independent standard normal distribution, so does
each component of UTZ. We conclude that SSE follows a chi-squared
distribution with n − p − 1 degrees of freedom.
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Distribution of the Sum of Squares Error
We can apply analogous arguments to SSR and SST. In summary, we have
29.2. Theorem.

(i) SSE =ff2 follows a chi-squared distribution with n − p − 1 degrees of
freedom.

(ii) If ˛ = (˛0; 0; : : : ; 0), then SSR =ff2 follows a chi-squared distribution
with p degrees of freedom.

Furthermore, SSR and SSE are independent random variables.

29.3. Corollary. The estimator

S2 :=
SSE

n − p − 1

is unbiased for ff2.
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Practical Calculations
29.4. Lemma. The regression sum of squares can be expressed as

SSR = ⟨b; XTY ⟩ − 1

n

“ nX
i=1

Yi
”2

In particular, in the case of the multilinear model,

SSR = b0

nX
i=1

Yi +
pX

j=1

bj

nX
i=1

xj iYi −
1

n

“ nX
i=1

Yi
”2
;

and in the polynomial model,

SSR = b0

nX
i=1

Yi +
pX

j=1

bj

nX
i=1

x ji Yi −
1

n

“ nX
i=1

Yi
”2
:
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Estimated Variance and Correlation Coefficient
29.5. Example. In Example 28.2 we obtained the regression equation

b—Y |x1;x2 = 24:75− 4:16x1 − 0:015x2:

for the mean gas mileage of cars as a function of weight x1 and motor
temperature x2. We now want to find R2 for our model.
It is convenient to write

SSR = ⟨B;XTY ⟩ − 1

n

“ nX
i=1

Yi
”2
:

We first calculate

XT y =

0B@
P

yiP
x1iyiP
x2iyi

1CA =

0B@ 170:00
282:405
8887:00

1CA ;
nX

i=1

y2i = 2900:46:
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Estimated Variance and Coefficient of Determination
These values give us

SST =
nX

i=1

y2i −
1

n

“ nX
i=1

yi
”2

= 10:46;

SSR =

*0B@ 170:00
282:405
8887:00

1CA ;

0B@ 24:75
−4:16
−0:015

1CA+− 170:002

25
= 10:32:

Hence,
R2 =

10:32

10:46
= 0:9866:

We also note that SSE = SST−SSR = 10:46− 10:32 = 0:14 and the
estimated variance is

bff2 = s2 =
SSE

n − p − 1
=

0:14

10− 2− 1
= 0:02:
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Estimated Variance and Coefficient of Determination
We can extract the estimated variance and R2 directly from the model:

model = LinearModelFit@data, 8x1, x2<, 8x1, x2<D;
model@"EstimatedVariance"D

0.02005

model@"RSquared"D

0.986582
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F -Test for Significance of Regression
Since SSR measures the variability associated with the model and SSE
measures “random variation”, we will find the regression significant if SSR
is much larger than SSE. The basis for the test is Theorem 29.2.
29.6. F -Test for Significance of Regression. Let x1; : : : ; xp be the predictor
variables in a multilinear model (28.1) for Y . Then

H0 : ˛1 = ˛2 = · · · = ˛p = 0;

is rejected at significance level ¸ if the test statistic

Fp;n−p−1 =
SSR =p

SSE =(n − p − 1)
=

SSR =p

S2
(29.2)

satisfies Fp;n−p−1 > f¸;p;n−p−1.
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Significance of Regression
We remark that

Fp;n−p−1 =
n − p − 1

p

SSR =SST
SSE =SST

=
n − p − 1

p

SSR =SST
(SST−SSR)=SST

=
n − p − 1

p

R2

1− R2

so the value of R2 alone can be used to test for significance of regression.
29.7. Example. In Example 29.5, we obtained R2 = 0:986. Since n = 10
and p = 2 the value of the test statistic for significance of regression is

n − p − 1

p

R2

1− R2
=

7

2

0:986

0:014
= 243:05:

The 95% point of the F2;7-distribution is 4.74, so we can reject H0 with
P < 0:05. There is evidence that the regression is significant.
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Expectation for Random Vectors
Goal: Derive distribution of the estimators b for the model parameters ˛.
Recall: Let Y = (Y1; : : : ; Yn)

T be a random vector. Then

E[Y ] =

0B@E[Y1]
...

E[Yn]

1CA :

For random vectors Y ;Z and a constant m × n matrix C:
(i) E[C] = C,
(ii) E[CY ] = C E[Y ],
(iii) E[Y + Z] = E[Y ] + E[Z].
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Expectation of the Least-Squares Estimators
We can calculate directly that the expectation of the response vector is

E[Y ] = E[X˛ + E] = E[X˛] + E[E] = X˛:

Then

E[b] = E[(XTX)−1XTY ] = (XTX)−1XT E[Y ]

= (XTX)−1XTX˛

= ˛:

It follows that b̨ = b is an unbiased estimator for ˛.
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Variance for Random Vectors
Recall: Let Y = (Y1; : : : ; Yn)

T be a random vector. Then

Var[Y ] =

0BBBBB@
Var[Y1] Cov[Y1; Y2] : : : Cov[Y1; Yn]

Cov[Y1; Y2] Var[Y2]
. . . ...

... . . . . . . Cov[Yn−1; Yn]

Cov[Y1; Yn] : : : Cov[Yn−1; Yn] Var[Yn]

1CCCCCA

and
Var[CY ] = C Var[Y ]CT ;

where C is a constant m × n matrix.
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Variance of the Least-Squares Estimators
In our case, a random sample (x1; Y1); : : : ; (xn; Yn) is given where the Yi are
independent and all Yi have the same variance ff2.
Therefore,

Var[Y ] = ff2
1n:

We then have

Var[b] = Var[(XTX)−1XTY ]

= (XTX)−1XT Var[Y ]((XTX)−1XT )T

= ff2(XTX)−1XT ((XTX)−1XT )T

= ff2(XTX)−1
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Variance of the Least-Squares Estimators
Let us write

(XTX)−1 =

0BBBBBBBB@

‰00 ∗ · · · · · · ∗
∗ ‰11

. . . ∗
... . . . . . . . . . ...
... . . . . . . ∗
∗ · · · · · · ∗ ‰pp

1CCCCCCCCA
where the starred values are uninteresting for us.
Hence,

Var[Bi ] = ‰i iff
2; i = 0; : : : ; p;

Note that the estimators B0; : : : ; Bp are not independent of each other,
but we will not investigate their covariance here.
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Distribution of the Least-Squares Estimators
Since

b = (XTX)−1XTY

and the components of Y follow normal distributions, each bi is a linear
combination of independent normal distributions. Hence, each bi must
itself follow a normal distribution.
We have therefore proved the following result:
29.8. Theorem. The random vector b follows a normal distribution with
mean ˛ and variance-covariance matrix ff2(XTX)−1.
It is also possible to prove:
29.9. Theorem. The statistic (n − p − 1)S2=ff2 = SSE =ff2 is independent
of b.
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Confidence Intervals for the Model Parameters
The variables

Z =
bj − ˛j
ff
p
‰j j

; j = 0; : : : ; p;

are standard normal. Thus, for j = 0; : : : ; p,

(bj − ˛j)=(ff
p
‰j j)q

(n − p − 1)S2=ff2=(n − p − 1)
=
b̨
j − ˛j
S
p
‰j j

; (29.3)

follows a T -distribution with n − p − 1 degrees of freedom.
We immediately obtain the following 100(1− ¸)% confidence intervals for
the model parameters:

˛j = bj ± t¸=2;n−p−1S
q
‰j j ; j = 0; : : : ; p:
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Confidence Intervals for the Model Parameters

29.10. Example. Continuing from Example 29.5, we have s2 = 0:02005, so
the variance-covariance matrix is

MatrixForm@0.02005 Inverse@Transpose@XD.XDD

0.121719 -0.060669 -0.000344635

-0.060669 0.0348589 0.0000434344

-0.000344635 0.0000434344 5.17872 ´ 10-6

We can also obtain the matrix directly from the model:
MatrixForm@model@"CovarianceMatrix"DD

0.121719 -0.0606689 -0.000344635

-0.0606689 0.0348589 0.0000434344

-0.000344635 0.0000434344 5.17871 ´ 10-6
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Confidence Intervals for the Model Parameters
Reading off from the diagonal, we find the estimated variances of the
estimators:

\Var[B0] = s2‰00 = 0:1217;

\Var[B1] = s2‰11 = 0:03485;

\Var[B2] = s2‰22 = 5:178 · 10−6:

We hence have the following 95% confidence intervals:

˛0 = b0 ± t0:025;7

q
s2‰00 = 24:75± 2:365

√
0:1217

= 24:75± 0:825

˛1 = b1 ± t0:025;7

q
s2‰11 = −4:16± 2:365

√
0:03485

= −4:16± 0:44

˛2 = b2 ± t0:025;7

q
s2‰22 = −0:15± 2:365

√
5:178 · 10−6

= −0:15± 0:0054
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Confidence Intervals for the Model Parameters
Mathematica can directly give the confidence intervals and the standard
deviations of the estimators (the square roots of the diagonal elements of
the variance-covariance matrix).
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Confidence Intervals for the Estimated Mean
Let us write

x0 =

0BBBB@
1
x10
...

xp0

1CCCCA or x0 =

0BBBB@
1
x
...
xp

1CCCCA
depending on whether we are considering a multilinear or a polynomial
model. Of course, any combination of the two may be considered
analogously.
Our goal is to make inferences on the estimated mean at x0. We write

b—Y |x0 = xT
0 b = xT

0 (X
TX)−1XTY

We see that b—Y |x0 is a linear combination of the independent and normally
distributed Yi and therefore follows a normal distribution.
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Confidence Intervals for the Estimated Mean
Furthermore,

E[b—Y |x0 ] = E[xT
0 b] = xT

0 E[b] = xT
0 ˛ = —Y |x10;:::;xp0

and
Var[b—Y |x0 ] = Var[xT

0 b] = xT
0 Var[b]x0 = ff2xT

0 (X
TX)−1x0:

It follows that b—Y |x0 − —Y |x0

ff
q
xT
0 (X

TX)−1x0

is standard normal and, after dividing by
q
(n − p − 1)S2=ff2=

√
n − p − 1

that b—Y |x0 − —Y |x0

S
q
xT
0 (X

TX)−1x0
(29.4)

follows a T distribution with n − p − 1 degrees of freedom.
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Confidence Intervals for the Estimated Mean
We thus have the following 100(1− ¸)% confidence interval for —Y |x0 :

—Y |x0 = b—Y |x0 ± t¸=2;n−p−1S
q
xT
0 (X

TX)−1x0

29.11. Example. Following on from Example 29.5, the estimate for the
average gasoline mileage for a car weighing 1.5 tons being operated at
70◦ F is

b—Y |1:5;70 = 24:75− 4:16 · 1:5− 0:14897 · 70 = 17:47:

We want to find a 95% confidence interval for this mean. The vector x0 is
given by

x0 =

0B@ 1
1:5
70

1CA :
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Prediction Intervals
Then

—Y |1:5;70 = 17:47± 2:365 · S
q
xT
0 (X

TX)−1x0 = 17:47± 0:16:

This agrees with Mathematica’s built-in functionality:
model@"MeanPredictionBands"D �. 8x1 ® 1.5, x2 ® 70<

817.3105, 17.6239<

As in the previous section, we can obtain a similar 100(1−¸)% prediction
interval for the value of Y | x10; : : : ; xp0,

Y | x0 = b—Y |x0 ± t¸=2;n−p−1S
q
1 + xT

0 (X
TX)−1x0:

We omit the (completely analogous) details.
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Hypothesis Testing on the Model Parameters
Based on the T -distributions of (29.3) and (29.4) we can of course
perform tests on the model parameters ˛ and the predicted mean b—Y |x .
Since such tests should be routine by now, we omit the details. However, a
special case is of interest:
29.12. T -Test for Model Sufficiency. Suppose that a regression model
using the parameters ˛0; : : : ; ˛p is fitted to Y . Then for any j = 0; : : : ; p

H0 : ˛j = 0

is rejected at significance level ¸ if the test statistic

Tn−p−1 =
bj

S
p
‰j j

:

satisfies |Tn−p−1| > t¸=2;n−p−1.
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T -Test for the Model Parameters
If we are able to reject H0, there is evidence that the predictor is needed
for the model.
If we fail to reject H0, there is no evidence that the predictor is needed and
we may proceed to fit a model without this predictor.

29.13. Example. Suppose we are given the data

x 5 7.5 10 12.5 15 17.5 20

y 1 2.2 4.9 5.3 8.2 10.7 13.2

We would like to find a quadratic model for the data:
Data = 885, 1<, 87.5, 2.2<, 810, 4.9`<, 812.5, 5.3`<,

815, 8.2`<, 817.5, 10.7<, 820, 13.2`<<;
model = NonlinearModelFit@Data, b0 + b1 x + b2 x^2 8b0, b1, b2<, xD;
model@"BestFit"D

-1.03571 + 0.312857 x + 0.02 x2
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T -Test for the Model Parameters
The data and the model curve is plotted below.
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T -Test for the Model Parameters
We can find confidence intervals for all model parameters:

Based on these 95% confidence intervals, we can not reject H0 : ˛j = 0 for
any j = 0; 1; 2. This means that there is no evidence that any single ˛j is
non-zero.
However, not all coefficients will be zero. The regression is clearly
significant (as can be seen by conducting a test for significance of
regression; see Example 29.7).
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T -Test for the Model Parameters
We can eliminate any one of the there predictors simply be deleting the
corresponding column from the model specification matrix X. This yields
the alternative models
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b—Y |x = −3:66071 + 0:812857x;b—Y |x = 0:136315x + 0:0265909x2;b—Y |x = 0:67285 + 0:0321498x2:
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General Test for Model Sufficiency
It is of course not clear which of these three models is best; this is a
question we will return at a later point.
The T -test 29.12 can be used to determine whether a single predictor may
be eliminated from the model. It is often practical, however, to compare a
general subset of predictors with a full model of p + 1 predictor variables,

—Y |x1;:::;xp = ˛0 + ˛1x1 + · · ·+ ˛pxp: (29.5)

After possibly renumbering the variables we compare with a reduced
model of m + 1 < p + 1 predictor variables

—Y |x1;:::;xm = ˜̨
0 + ˜̨

1x1 + · · ·+ ˜̨
mxm: (29.6)

We define the sums of squares errors for the two models by

SSE;full = sum of squares error SSE for full model;
SSE;reduced = sum of squares error SSE for reduced model:
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Partial F -Test for Model Sufficiency
We will base our test on the principle that there is evidence that the full
model is needed if SSE;full ≪ SSE;reduced.
29.14. Partial F -Test for Model Sufficiency. Let x1; : : : ; xp be possible
predictor variables for Y and (29.5) and (29.6) the full and reduced
models, respectively. Then

H0 : the reduced model is sufficient

is rejected at significance level ¸ if the test statistic

Fp−m;n−p−1 =
n − p − 1

p −m

SSE;reduced−SSE;full
SSE;full

(29.7)

satisfies Fp−m;n−p−1 > f¸;p−m;n−p−1.
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Partial F -Test for Model Sufficiency
29.15. Example. In the context of Example 29.13 we can compare the
linear and quadratic models

b—Y |x ;full = −1:03571 + 0:312857x + 0:02x2; SSE;full = 1:21857;b—Y |x ;reduced = −3:66071 + 0:812857x; SSE;reduced = 2:53107:

Here, n = 7, p = 2, m = 1, so

Fp−m;n−p−1 =
n − p − 1

p −m

SSE;reduced−SSE;full
SSE;full

= 4:30832:

The critical point f0:05;1;4 = 7:71, so we can not reject H0 at the 5% level
of significance. There is no evidence that the full model is needed.
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Partial F -Test for Model Sufficiency
29.16. Example. Continuing with Example 29.13 we can also compare the
general quadratic model with a square monomial model:

b—Y |x ;full = −1:03571 + 0:312857x + 0:02x2; SSE;full = 1:21857;b—Y |x ;reduced = 0:0346414x2; SSE;reduced = 1:83967:

Here, n = 7, p = 2, m = 0, so

Fp−m;n−p−1 =
n − p − 1

p −m

SSE;reduced−SSE;full
SSE;full

= 1:01939:

The critical point f0:05;2;4 = 6:94, so we can not reject H0 at the 5% level
of significance. There is no evidence that the full model is needed.
Comparing the sum of squares errors with the previous example, we can
furthermore conclude that a square monomial model gives a better fit than
the linear model.
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Partial F -Test for Model Sufficiency
The graph below shows the quadratic and the square monomial models.
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T -Test and Partial F -Test for Single Predictors
While the T -test can be used to determine whether a single predictor is
necessary for a given model, the F -test can be applied to an arbitrary
subset of predictors.
The question arises whether there is a difference between the two tests
when considering a single predictor, i.e., whether the F -test applied to a
single variable (as in Example 29.15) always yields the same result as the
T -test.
It is possible to prove that, indeed, the T -test for a single variable is
equivalent to a partial F -Test when applied to a reduced model lacking
only that single variable.
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Interpretations of the Partial F -Test
Furthermore, since SST = SSR +SSE, the test statistic (29.7) can be
re-written as

Fp−m;n−p−1 =
n − p − 1

p −m

SSE;reduced−SSE;full
SSE;full

n − p − 1

p −m

SSR;full−SSR;reduced
SSE;full

:

This shows that the F -test for significance of regression based on the
statistic (29.2),

Fp;n−p−1 =
n − p − 1

p

SSR
SSE

may be regarded as a partial F -test where the reduced model contains no
regressors.
Moreover, the partial F -test can be formulated in terms of the
determination coefficients R2 for the full and reduced models.
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30. Multiple Linear Regression III:
Finding the Right Model
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Qualitative Predictors
Problem: Include categorical predictors in a regression: brand, type,
gender, etc.
Suppose our data if of two different ”types”, Type A and Type B.
We introduce a parameter (indicator variable)

X =

(
1; predictor is of type A,
0; predictor is of type B.

This indicator variable can be included in regression models, as shown in
the following example.
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Example: Indicator Variable for the Intercept
30.1. Example. Consider the previously discussed Example 26.1:
Response: solvent evaporation in spray paint Y
Predictors:
I Humidity x1

I Brand of spray paint x2

Assumption/Model: humidity has the same systematic effect, but the paint
may be generally more resistant depending on the brand:

—Y |x1;x2 = ˛0 + ˛1x1 + ˛2x2:

where

x2 =

(
1; brand A used,
0; brand B used.
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Example: Indicator Variable for the Intercept

Brand A used (x2) x1 y Brand B used (x2) x1 y

1 35.3 11.2 0 39.1 6.7
1 29.6 11.0 0 46.8 7.7
1 31.0 12.6 0 48.5 6.8
1 58.0 8.3 0 59.3 7.0
1 62.0 10.1 0 70.0 5.2
1 72.1 9.6 0 70.0 4.0
1 74.0 6.1 0 74.4 5.7
1 77.0 8.7 0 72.1 4.9
1 71.1 8.1 0 58.1 5.5
1 57.0 9.0 0 44.6 6.1
1 46.4 8.2 0 33.4 7.5
1 29.6 13.0 0 28.6 8.0
1 28.0 11.7

x1 is the observed relative humidity (in %), and y is the observed solvent
evaporation (in %).
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Example: Indicator Variable for the Intercept
humidity = 835.3, 29.6, 31.0, 58.0, 62.0, 72.1, 74.0, 77.0, 71.1, 57.0, 46.4, 29.6,

28.0, 39.1, 46.8, 48.5, 59.3, 70.0, 70.0, 74.4, 72.1, 58.1, 44.6, 33.4, 28.6<;
n = Length@humidityD;
X = Transpose@8Table@1, 8i, n<D, humidity, Join@Table@1, 8i, 13<D, Table@0, 8i, 12<DD<D;
MatrixForm@XD

1 35.3 1

1 29.6 1

1 31. 1

1 58. 1

1 62. 1

1 72.1 1

1 74. 1

1 77. 1

1 71.1 1

1 57. 1

1 46.4 1

1 29.6 1

1 28. 1

1 39.1 0

1 46.8 0

1 48.5 0

1 59.3 0

1 70. 0

1 70. 0

1 74.4 0

1 72.1 0

1 58.1 0

1 44.6 0

1 33.4 0

1 28.6 0
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Example: Indicator Variable for the Intercept
From

MatrixForm@Inverse@Transpose@XD.XDD

0.488429 -0.00753783 -0.0993029

-0.00753783 0.00014026 0.000297154

-0.0993029 0.000297154 0.160886

y = 811.2, 11.0, 12.6, 8.3, 10.1, 9.6, 6.1, 8.7, 8.1, 9.0,
8.2, 13.0, 11.7, 6.7, 7.7, 6.8, 7.0, 5.2, 4.0, 5.7, 4.9,
5.5, 6.1, 7.5, 8.0<;

b = Inverse@Transpose@XD.XD.Transpose@XD.y;
MatrixForm@bD

10.398

-0.0770288

3.39386

we obtain the regression parameters

b0 = 10:3979; b1 = −0:0770; b2 = 3:3938:
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Example: Indicator Variable for the Intercept
The estimated model is

—̂Y |x1;x2 = 10:3979− 0:770x1 + 3:3938x2

so when paint A is used, the model is

—̂Y |x1;1 = 13:7917− 0:770x1;

while the model for paint B is

—̂Y |x1;0 = 10:3979− 0:770x1:

We could check as usual whether there is evidence to reject

H0 : ˛2 = 0;

i.e., whether the brand of paint truly matters.
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Example: Indicator Variable for the Intercept

Brand A Brand B
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Motivation for Indicator Variables
Why are we doing this?
We could also simply do two separate regressions, one for each brand of
paint.
Advantages:
I Greater overall sample size gives more degrees of freedom, so

confidence intervals are tighter and hypothesis tests are more powerful.
I The brand may be considered as one predictor among many possible

predictors, both continuous variables and qualitative variables. It
allows for a systematic model selection by comparing full and reduced
models.
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Indicator Variables for Several Predictors
We can use several indicator variables if there is more than one category or
type.
For example, in order to test three brands of paint, we employ a model

—Y |x1;x2;x3 = ˛0 + ˛1x1 + ˛2x2 + ˛3x3

where

(x2; x3) =

8>><>>:
(0; 0) type A used,
(1; 0) type B used,
(0; 1) type C used.

The number of possibilities for a qualitative variable are called levels. To
model ‘ levels, we need ‘− 1 indicator variables.
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Indicator Variables for Slope and Intercept
In our example we have assumed that the slope of the regression line will
be identical. If we do not suppose this to be the case, we can use our
indicator variables to also contribute to the slope. In the case of one
indicator variable x2 with two levels we use

—Y |x1;x2 = ˛0 + ˛1x1 + ˛2x2 + ˛3x1x2:

If x2 = 1, the model is

—Y |x1;1 = ˛0 + ˛2 + (˛1 + ˛3)x1;

while for x2 = 0, the model becomes

—Y |x1;0 = ˛0 + ˛1x1:

To test for equality of slopes, we test H0 : ˛3 = 0.
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The Model Selection Problem
Problem: Select the “right” model:
I In polynomial regression, the degree of the polynomial must be

decided upon;
I In multiple linear regression, the simplest model through use of the

smallest number of predictors must be found.
The basic problem is to find a model that gives a “good fit.”
Naive approach: Maximize R2.
Extreme result:
I In a multilinear model, include every possible predictor.
I In a polynomial model, let p = n − 1 and interpolate the data.

Clearly, this is nonsense. But why?
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Model Selection
We don’t create a model for it’s own sake, but because we want to
use it!

For example, a confidence interval for —Y |x0 is given by

—Y |x0 = b—Y |x0 ± t¸=2;n−p−1S
q
xT
0 (X

TX)−1x0

where
S2 =

SSE
n − p − 1

:

By increasing p, we
I decrease SSE and
I decrease n − p − 1.

The second effect is bad for t¸=2;n−p−1 but can be catastrophic for S2.
If p is too large, the model becomes useless.
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Model Selection Algorithms
Therefore, we want to increase p only until a further decrease of SSE is
outweighed by the decrease on n − p − 1.
More generally, we want to achieve a small SSE using the smallest possible
number of predictors.
One approach is to use a model selection algorithm. A subset of possible
models is compared until an “optimal” model is obtained.
We now look at three typical algorithms:

Forward Selection: Variables are added to the model one at a time until the
addition of another variable does not significantly improve the model. That
is, variables are added until we are unable to reject the reduced model.
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Forward Selection Method
30.2. Example. Assume that we have available three possible predictor
variables X1, X2 and X3. Suppose that our final model via forward
selection contains only the variables X3 and X1 and that they entered the
model in the order stated. These are the steps taken:

1. The three single-variable models

—Y |x1 = ˛0 + ˛1x1; —Y |x2 = ˛0 + ˛2x2; —Y |x3 = ˛0 + ˛3x3

are fitted. The value of R2 is found for each.
The one with the highest R2 is chosen and compared to the reduced
model —Y = ˛0. In this case it is the third model and we test

H0 : ˛3 = 0:

We find that H0 is rejected. Our model now includes X3.
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Forward Selection Method
2. The two two-variable models

—Y |x3;x1 = ˛0 + ˛1x1 + ˛3x3; —Y |x3;x2 = ˛0 + ˛2x2 + ˛3x3

are fitted. The value of R2 is found for each.
The one with the highest R2 is chosen and compared to the reduced
model —Y |x3 = ˛0 + ˛3x3.
In this case it is the first model and we test

H0 : ˛1 = 0:

We find that H0 is rejected. Our model now includes x1.
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Forward Selection Method
3. The three-variable model

—Y |x1;x2;x3 = ˛0 + ˛1x1 + ˛2x2 + ˛3x3

is fitted and we test

H0 : ˛2 = 0:

In this example, we find that H0 can not be rejected. The final mode
is hence

—Y |x3;x1 = ˛0 + ˛1x1 + ˛3x3
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Backward Elimination Procedure
Backward Elimination: One begins with a model that includes all the
predictor variables and deletes them one at a time from the model until the
reduced model is rejected.

30.3. Example. Assume that we have three potential predictor variables
and that via backward elimination we obtain a reduced model containing
only the variable X2. Assume that the variables X1 and X3 are deleted in
this order. These are the steps taken:

1. The full model

—Y |x1;x2;x3 = ˛0 + ˛1x1 + ˛2x2 + ˛3x3

is fitted. The value of R2 is found.
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Backward Elimination Procedure
2. The three two-variable models

—Y |x1;x2 = ˛0 + ˛1x1 + ˛2x2;

—Y |x1;x3 = ˛0 + ˛1x1 + ˛3x3;

—Y |x2;x3 = ˛0 + ˛2x2 + ˛3x3

are fitted. The value of R2 is found for each. The model with the
largest R2 is chosen (here: —Y |x2;x3) and compared with the full
model. We test

H0 : ˛1 = 0:

and are unable to reject H0. We hence delete X1 from the model.
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Backward Elimination Procedure
3. The two one-variable models

—Y |x2 = ˛0 + ˛2x2; —Y |x3 = ˛0 + ˛3x3

are fitted. The value of R2 is found for each. The model with the
largest R2 is chosen (here: —Y |x2) and compared with the full model.
We test

H0 : ˛3 = 0:

and are unable to reject H0. We hence delete x3 from the model.
4. We finally fit —Y = ˛0 and test

H0 : ˛2 = 0:

and are able to reject H0. We hence keep x2 and obtain the model
—Y |x2 = ˛0 + ˛2x2.
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Stepwise Method
Stepwise Method: In forward selection, once a variable enters the model it
stays. However, it is possible for one or more variables entering at a later
stage to render a previously selected variable unimportant.
To detect this, each time a new variable enters in stepwise regression, all
the variables in the previous model are checked for continued importance
and possibly eliminated.
Hence, the stepwise method can be regarded as a combination of forwards
election and backward elimination.

30.4. Example. In a multiple linear regression model, variables X1 and X3

are closely related, with variable X1 being the best single predictor.
Suppose that the final model contains the two variables X2 and X3, with
variable X2 entering on the second stage. The steps in the stepwise
regression are as follows:
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Stepwise Method
1. The three single-variable models

—Y |x1 = ˛0 + ˛1x1; —Y |x2 = ˛0 + ˛2x2; —Y |x3 = ˛0 + ˛3x3

are fitted. The value of R2 is found for each. The one with the
highest R2 is chosen and compared to the reduced model —Y = ˛0. In
this case it is the first model and we test

H0 : ˛1 = 0:

In this example, we find that H0 is rejected. Our model now includes
X1.



Multiple Linear Regression III: Finding the Right Model Slide 757

Stepwise Method
2. The two two-variable models

—Y |x1;x2 = ˛0 + ˛1x1 + ˛2x2; —Y |x1;x3 = ˛0 + ˛1x1 + ˛3x3

are fitted. The value of R2 is found for each. The one with the
highest R2 is chosen and compared to the reduced model
—Y |x1 = ˛0 + ˛3x1. In this case it is the first model; we test

H0 : ˛2 = 0:

and find that H0 is rejected. We also check to see if X1 is still needed,
i.e., we test the model —Y |x1;x2 for

H0 : ˛1 = 0:

and reject H0. Thus X2 alone is insufficient and our model now is

—Y |x1;x2 = ˛0 + ˛1x1 + ˛2x2:
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Stepwise Method
3. The three-variable model

—Y |x1;x2;x3 = ˛0 + ˛1x1 + ˛2x2 + ˛3x3

is fitted; we test

H0 : ˛3 = 0:

and reject H0. We now test whether X2 is still needed,

H0 : ˛2 = 0:

and reject H0. We also test whether X1 is still needed,

H0 : ˛1 = 0:

and fail to reject H0. Thus we eliminate X1 and obtain the final model

—Y |x2;x3 = ˛0 + ˛2x2 + ˛3x3
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Never do this!
The above methods are commonly used, especially in Data Mining.
However, the approach is actually terrible:
I We are performing many Fisher tests. Even disregarding all the

problems with this type of test, the P -values are not accurate.
If we reject each hypothesis for P < p0 and perform N independent
tests, then the chance of having “falsely” (by our definition) rejected
at least one of the H0 a mistake is

(1− p0)
N

For large N, this can become quite large.
I But our tests are not independent in the first place - in fact, they are

all performed on the same data set.
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Never do this!
I We are determining which tests to do based on data, rather than

getting data based on pre-determined tests.
I The tests are biased to yield R2 which is “too good” - the models are

too well-fitted to the data, where the data itself may contain spurious
features that disappear when new data is collected.

I The confidence intervals obtained from the data are too small. Also,
often the final model is used as if it alone had been tested on the
data, ignoring that previously lots of other models were discarded.

These and other issues are described in the web page cited below, where
references to publications are also given.
Nowadays, there exist more sophisticated and improved approaches for
model selection.

Literature:
https://www.stata.com/support/faqs/statistics/stepwise-regression-problems/

https://www.stata.com/support/faqs/statistics/stepwise-regression-problems/
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Overfitting
One of the main dangers when selecting a model is that the chosen model
may fit the provided data too well. This means that the model takes into
account fluctuations in values that are actually just the result of random
scattering (due to ff2 rather than a fundamental part of the model.
When the model is then used to describe new data, it turns out that the
random fluctuations that it models are different and the model no longer
gives an accurate description of the new data.
This is known as overfitting the data.
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The Prediction Sum of Squares
There are various approaches to prevent overfitting. A basic idea is to test
how well a model describes the existing data when the data points that it
estimates are omitted.
A simple method is to calculate the prediction sum of squares (PRESS)
for a model. This is done as follows:
Given a model Y | x and a sample of size n, we calculate byi , i = 1; : : : ; n,
by omitting Yi from the response data and fitting the model based on the
remaining n − 1 data points.
We then calculate the PRESS statistic

PRESS =
nX

i=1

(yi − byi )2:
A small PRESS indicates that the model has not been fitted in a way that
depends on extreme values of the responses.



Multiple Linear Regression III: Finding the Right Model Slide 763

The Prediction Sum of Squares
Full model

Model with y1 removed
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Concluding Remarks
Regression is today one of the most important tools of data science.
Creating models and making inferences in fields such as machine learning,
image recognition, behavior prediction and many other fields rely
essentially on some type of regression.
However, finding the right model is hard. The last 50 years have seen
many new and interesting approaches arise as old methods became subject
to more intense scrutiny and were discarded.
No more than an introduction to the most basic concepts and methods is
given here. We have not touched upon many issues of real practical
interest, such as correlation between predictors and sophisticated
techniques for model selection and comparison.
Nevertheless, hopefully this introduction has stimulated your interest in
further investigations. Many specialized courses await!
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31. ANOVA I: Basic Model
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Introduction to Linear Regression

26. Simple Linear Regression I: Basic Model and Inferences

27. Simple Linear Regression II: Predictions and Model Analysis

28. Multiple Linear Regression I: Basic Model

29. Multiple Linear Regression II: Inferences on the Model

30. Multiple Linear Regression III: Finding the Right Model

31. ANOVA I: Basic Model

32. ANOVA II: Homoscedasticity and Post-Tests
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Comparison of Multiple Means
Goal: Compare the means of multiple (k ≥ 2) populations, i.e., perform a
Fisher test for

H0 : —1 = —2 = · · · = —k

Assumption: The k populations follow normal distributions with equal
variance ff2.
Problem: Generalize the two-population T test

Tn1+n2−2 =
X1 − X2q

S2
p(1=n1 + 1=n2)
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Comparison of Two Means
Review: k = 2 populations, sample sizes equal, n1 = n2 = n.
The test statistic for the Student T -Test 23.5 is

T2n−2 =
X1 − X2q
2S2

p=n
; S2

p =
S2
1 + S2

2

2
: (31.1)

Square the statistic:

F1;2n−2 =
n
2 (X1 − X2)

2

S2
p

:

It is easy to generalize

S2
p =

1

k

kX
i=1

S2
i

if samples of equal size are taken from k populations.
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Sampling the Sample Mean

How to generalize X1 − X2X1 − X2X1 − X2 to kkk populations?

Suppose that
—1 = —2 = · · · = —k =: —:

Then the k populations all follow the same distribution, N(—; ff2).
Statistically, they are the same population.
Taking samples of equal sizes n1 = n2 = : : : = nk =: n, the collection of
sample means

X1; X2; : : : ; Xk

is a random sample of size k from the distribution of

X ∼ N(—; ff2=n)
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Sampling the Sample Mean
The variance of the sample mean,

Var[X] = ffX = ff2=n;

is estimated by the sample variance

S′2 =
1

k − 1

kX
i=1

 
X i −

X1 + · · ·+ Xk

k

!2

(31.2)

We note that
(k − 1) · S′2

ff2=n
=

nS′2

ff2

follows a chi-squared distribution with k − 1 degrees of freedom.
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Sample Variance of the Sample Mean
For k = 2, this becomes

S′2 =

 
X1 −

X1 + X2

2

!2

+

 
X2 −

X1 + X2

2

!2

=

 
X1 − X2

2

!2

+

 
X2 − X1

2

!2

=
1

2
(X1 − X2)

2:

Hence, we can write (31.1) as an F -distributed random variable,

T 2
2n−2 =

n
2 (X1 − X2)

2

S2
p

=
nS′2

S2
p

(31.3)

and both S′2 and S2
p are now easy to generalize to k > 2.
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Analysis of Variance
Testing H0 : —1 = · · · = —k is known as performing an

Analysis of Variance (ANOVA)

Interpretation 1:

comparison of means comparison of variances

Interpretation 2:

observed difference in X1; : : : ; Xk = variation due to different means
+ variation due to ff2

or
SST = SSR +SSE :
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Analysis of Variance
Problem: what if n1; : : : ; nk are different?

I Sample sizes equal: balanced ANOVA,
I Sample sizes unequal: unbalanced ANOVA.

Approach:
I Ignore previous motivation using S2

p and S′2 for now.
I Instead, “model-based” point of view, inspired by regression analysis.

31.1. Remark. The field of ANOVA has a lot of specialized terminology,
which varies depending on the actual application. We will ignore this
completely and only concentrate on the fundamental problem of comparing
means of different populations.
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Model and Notation
I k populations, Y | i = Yi ∼ N(—i ; ff

2), i = 1; : : : ; k .
I Sample sizes ni , i = 1; : : : ; k , in total

N = n1 + · · ·+ nk :

observations.
I Yi j is the jth response (measurement) for the ith population.
I Sample total and mean of the ith population

Ti · =
niX
j=1

Yi j Y i · =
Ti ·
ni

:

I Overall total and mean

T·· =
kX

i=1

Ti · Y ·· =
T··
N

:
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Model and Notation

Population Responses Total Mean

1 Y11 Y12 Y13 : : : Y1n1 T1· Y 1·
2 Y21 Y22 Y23 : : : Y2n2 T2· Y 2·
... ... ... ... ... ... ...
k Yk1 Yk2 Yk3 : : : Yknk Tk· Y k·

Overall T·· Y ··

31.2. Model Assumption. We assume that the Yi j are independent,
normally distributed random variables with mean —i and variance ff2

(independent of i and j).
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Model
We may suppose that

Yi j = —i + Ei j ;

and define the pooled population mean

— :=
1

N

kX
i=1

ni—i :

(Note that we are pooling unknown, true means, not sample means.)
Difference between the pooled mean and the individual population mean:

¸i := —i − —:

Thus we can express our model as

Yi j = —+ ¸i + Ei j

= overall mean + deviation from overall mean + random variation
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Analogy to Linear Regression
The null hypothesis

H0 : —1 = —2 = · · · = —k ;

can then be expressed as

H0 : ¸1 = ¸2 = · · · = ¸k = 0: (31.4)

By formulating the model as

Yi j = —+ ¸i + Ei j

and expressing the null hypothesis in the form (31.4), we are preparing to
apply regression techniques to the problem. (Compare with testing for
significance of regression.)



ANOVA I: Basic Model Slide 778

Estimators for the Model and Error Sum of Squares
Unbiased Estimators:

b— = Y ··; c—i = Y i ·:

Then

Yi j = Y ·· + (Y i · − Y ··) + (Yi j − Y i ·)

= b—+ çi + ei j :

where the ei j are the residuals.
We define the error sum of squares,

SSE :=
kX

i=1

niX
j=1

e2i j =
kX

i=1

niX
j=1

(Yi j − Y i ·)
2: (31.5)
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Fundamental Model Decomposition
The overall variation of the data is given by the total sum of squares,

SST :=
kX

i=1

niX
j=1

(Yi j − Y ··)
2

Direct calculation:

SST =
kX

i=1

niX
j=1

(Y i · − Y ·· + Yi j − Y i ·)
2

=
kX

i=1

niX
j=1

(Y i · − Y ··)
2 +

kX
i=1

niX
j=1

(Yi j − Y i ·)
2

+ 2
kX

i=1

(Y i · − Y ··)
niX
j=1

(Yi j − Y i ·)
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A Sum-of-Squares Identity
Since

niX
j=1

(Yi j − Y i ·) =
niX
j=1

Yi j − niY i · = 0

we see that
kX

i=1

niX
j=1

(Yi j − Y ··)
2

| {z }
SST

=
kX

i=1

ni (Y i · − Y ··)
2

| {z }
SSTr

+
kX

i=1

niX
j=1

(Yi j − Y i ·)
2

| {z }
SSE

In this sum-of-squares identity,
I The total sum of squares SSTSSTSST is a measure of the total variability of

the data,
I The treatment sum of squares SSTrSSTrSSTr measures the variability due to

different treatments (populations),
I The error sum of squares SSESSESSE measures the variability due to

random fluctuation.
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The Error Sum of Squares
The sample variance in each population is given by

S2
i =

1

ni − 1

niX
j=1

(Yi j − Y i ·)
2; i = 1; : : : ; k: (31.6)

We know that the i = 1; : : : ; k ,
(ni − 1)S2

i

ff2
; i = 1; : : : ; k

follow independent chi-squared distributions with ni − 1 degrees of
freedom. By (31.5) we have

SSE =
kX

i=1

(ni − 1)S2
i :

We conclude that
SSE
ff2

follows a chi-squared distribution with N − k degrees of freedom.
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The Error Mean Square
We define the error mean square

MSE =
SSE
N − k

which is analogous to S2 in linear regression. Since

(N − k)
MSE
ff2

=
SSE
ff2

follows a chi-squared distribution with N − k degrees of freedom, we see
that

E[MSE] = ff2;

so the error mean square is an unbiased estimator for the variance.
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The Treatment Mean Square
We define the treatment mean square by

MSTr :=
SSTr
k − 1

; SSTr =
kX

i=1

ni (Y i · − Y ··)
2

The treatment mean square is generally analogous to S′2 in (31.2) and
SSR in linear regression. However, here we have different sample sizes and
so we can not directly transfer the argument for S′2 to find its distribution.
Instead, we will analyze SSTr by hand.
31.3. Lemma. If ¸1 = · · · = ¸k = 0, then

SSTr
ff2

=
(k − 1)MSE

ff2

follows a chi-squared distribution with k − 1 degrees of freedom.
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The Treatment Mean Square
Proof.
We define

E i · :=
1

ni

niX
j=1

Ei j ; E·· :=
1

N

kX
i=1

niX
j=1

Ei j :

Then, supposing ¸1 = · · · = ¸k = 0,

Y ·· =
1

N

kX
i=1

niX
j=1

Yi j =
1

N

kX
i=1

niX
j=1

(—+ ¸i + Ei j) = —+ E··

and

Y i · =
1

ni

niX
j=1

Yi j =
1

ni

niX
j=1

(—+ ¸i + Ei j) = —+ E i ·:
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The Treatment Mean Square
Proof (continued).
We thus have

SSTr =
kX

i=1

ni (Y i · − Y ··)
2 =

kX
i=1

ni (—+ E i · − —− E··)
2

=
kX

i=1

niE
2
i · + N · E2

·· − 2E··

kX
i=1

niE i ·| {z }
=N·E··

=
kX

i=1

niE
2
i · − N · E2

··

=
kX

i=1

niE
2
i · −

1

N

“ kX
i=1

niE i ·
”2
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The Treatment Mean Square
Proof (continued).
To proceed further, we adapt the Helmert transformation (15.3). Note
that the random variables √ni · E i ·, i = 1; : : : ; k , follow normal
distributions with mean 0 and variance ff2.
We set 0BBBBBB@

Z1

Z2

Z3
...
Zk

1CCCCCCA =

0BBBBBBB@

q
n1
N

q
n2
N

q
n3
N · · ·

q
nk
N

∗ ∗ ∗ · · · ∗
∗ ∗ ∗ · · · ∗
... ... ... . . . ...
∗ ∗ ∗ · · · ∗

1CCCCCCCA
| {z }

=:A

0BBBBBB@

√
n1 · E1·√
n2 · E2·√
n3 · E3·

...√
nk · Ek·

1CCCCCCA

where the matrix A is taken so that A−1 = AT by choosing the rows below
the first to be orthonormal.
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The Treatment Mean Square
Proof (continued).
Then the same arguments as in Slides 353 - 357 show that the variables
Z1; : : : ; Zk are i.i.d. normal random variables with mean 0 and variance ff2.
Furthermore,

SSTr =
kX

i=1

niE
2
i · −

1

N

“ kX
i=1

niE i ·
”2

=
kX

i=1

Z2
i − Z2

1 =
nX

i=2

Z2
i ;

so
SSTr
ff2

follows a chi-squared distribution with n − 1 degrees of freedom.
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The ANOVA F -Test
It can be shown that SSE and SSTr are independent - we omit the proof.
Then we obtain the following result:
31.4. Theorem. If H0 : ¸1 = ¸2 = · · · = ¸k = 0 is true, the quotient

Fk−1;N−k =
MSTr
MSE

(31.7)

follows an F -distribution with k − 1 and N − k degrees of freedom.
For computing these statistics by hand, we note that

SST =
kX

i=1

niX
j=1

Y 2
i j −

T 2
··
N

; SSTr =
kX

i=1

T 2
i ·
ni
− T 2

··
N

(31.8)

and SSE = SST−SSTr.



ANOVA I: Basic Model Slide 789

The ANOVA F -Test
If the variation due to different treatments (given by MSTr) is much larger
than the the variation due to random fluctuations (given by MSE), we will
decide that there is evidence of different means.

31.5. ANOVA F -Test. Suppose Y1; : : : ; Yk are normally distributed random
variables with common variance ff2. Suppose that samples of size
n1; : : : ; nk are taken from each population and N = n1 + · · ·+ nk . Then
we reject

H0 : —1 = —2 = · · · = —k

in favor of
H1 : —i ̸= —j for at least one pair (i ; j), 1 ≤ i < j ≤ k

at significance level ¸ if the test statistic

Fk−1;N−k =
MSTr
MSE

(31.9)

satisfies Fk−1;N−k > f¸;k−1;N−k .
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ANOVA Table
When performing an ANOVA test, one usually enters the statistics in an
ANOVA table, which looks as follows:

Source of Deg. of Sum of
Variation Freedom Squares Mean Square F -value

Treatment k − 1 SSTr MSTr
MSTr
MSE

Error N − k SSE MSE

Total N − 1 SST

From the F -value and the degrees of freedom, the significance of the test
for equality of means can be deduced - this significance level is also
sometimes output by the computer program.



ANOVA I: Basic Model Slide 791

Example of an ANOVA
31.6. Example. A study is designed to investigate the sulfur content of the
five major coal seams in a certain geographical region. Core samples are
taken at randomly selected points within each seam, and the measured
response is the percentage of sulfur in each core sample. We want to
detect any differences that might exist in the mean sulfur content for these
five seams.
The following sulphur contents are obtained from samples in the five
different coal seams:

Seam i Observed Sulphur Content Yi j Total Ti · Mean Y i ·

1 1.51 1.92 1.08 2.04 2.14 1.76 1.17 11.62 1.66
2 1.69 0.64 0.90 1.41 1.01 0.84 1.28 1.59 9.36 1.17
3 1.56 1.22 1.32 1.39 1.33 1.54 1.04 2.25 1.49 13.14 1.46
4 1.30 0.75 1.26 0.69 0.62 0.90 1.20 0.32 7.04 0.88
5 0.73 0.80 0.90 1.24 0.82 0.72 0.57 1.18 0.54 1.30 8.8 0.88

49.96 1.189
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ANOVA
Mathematica has built-in ANOVA functionality. We enter the data in rows:

x1 = 81.51, 1.92, 1.08, 2.04, 2.14, 1.76, 1.17<;
x2 = 81.69, 0.64, 0.9, 1.41, 1.01, 0.84, 1.28, 1.59<;
x3 = 81.56, 1.22, 1.32, 1.39, 1.33, 1.54, 1.04, 2.25, 1.49<;
x4 = 81.3, 0.75, 1.26, 0.69, 0.62, 0.9, 1.2, 0.32<;
x5 = 80.73, 0.8, 0.9, 1.24, 0.82, 0.72, 0.57, 1.18, 0.54, 1.3<;
n@i_D := Length@xiD

The analysis of variance requires our data to be in the form of pairs
(population, response):

Data = Transpose@
8Flatten@Table@Table@i, 8j, 1, n@iD<D, 8i, 1, 5<DD, Flatten@Table@xi, 8i, 1, 5<DD<D

881, 1.51<, 81, 1.92<, 81, 1.08<, 81, 2.04<, 81, 2.14<, 81, 1.76<, 81, 1.17<,
82, 1.69<, 82, 0.64<, 82, 0.9<, 82, 1.41<, 82, 1.01<, 82, 0.84<, 82, 1.28<,
82, 1.59<, 83, 1.56<, 83, 1.22<, 83, 1.32<, 83, 1.39<, 83, 1.33<, 83, 1.54<,
83, 1.04<, 83, 2.25<, 83, 1.49<, 84, 1.3<, 84, 0.75<, 84, 1.26<, 84, 0.69<,
84, 0.62<, 84, 0.9<, 84, 1.2<, 84, 0.32<, 85, 0.73<, 85, 0.8<, 85, 0.9<,
85, 1.24<, 85, 0.82<, 85, 0.72<, 85, 0.57<, 85, 1.18<, 85, 0.54<, 85, 1.3<<
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ANOVA
The generated ANOVA table lists the degrees of freedom (DF), sums of
squares, mean squares, F -ratio and additionally the P -value of the F -test.
The treatments are denoted “Models,” and the treatment means are
denoted “cell means.”
ANOVA@DataD

:ANOVA ®

DF SumOfSq MeanSq FRatio PValue

Model 4 3.93539 0.983848 8.09481 0.0000856622

Error 37 4.497 0.121541

Total 41 8.43239

,

CellMeans ®

All 1.18952

Model@1D 1.66

Model@2D 1.17

Model@3D 1.46

Model@4D 0.88

Model@5D 0.88

>

We also obtain the means Y i · from “CellMeans→Model[i]” and Y ·· as
“CellMeans→All.”
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Remarks on the ANOVA F -Test
The result of the F -test in the above example is thus that the mean
sulphur contents differ between the seams; H0 is rejected with a P -value of
less than 0.0001. We conclude there is evidence that some seams have a
higher sulphur content than others.
To determine specifically which seams have a higher sulphur content
requires pairwise comparisons of means, i.e., we need to compare seam
1 to seam 2, seam 1 to seam 3, seam 2 to seam 3 etc. We will discuss this
in the following section.
Due to the construction of the F -test it is absolutely essential that all
populations have equal variance. In the next section, we present a test
suited for testing equality of variances among several populations.
On the other hand, the ANOVA F -test is not very sensitive to departures
from normality, i.e., if the variables Yi j are not strictly normally distributed,
the result of the F -test is still reliable, even though the P -value is then
only approximate. This assumes that the sample size is reasonably large.
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32. ANOVA II: Homoscedasticity and Post-Tests
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Introduction to Linear Regression

26. Simple Linear Regression I: Basic Model and Inferences

27. Simple Linear Regression II: Predictions and Model Analysis

28. Multiple Linear Regression I: Basic Model

29. Multiple Linear Regression II: Inferences on the Model

30. Multiple Linear Regression III: Finding the Right Model

31. ANOVA I: Basic Model

32. ANOVA II: Homoscedasticity and Post-Tests
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Bartlett’s Test for Equality of Variances

We wish to test

H0 : ff
2
1 = · · · = ff2

k ;

Recall from (31.6) that

MSE =
kX

i=1

(ni − 1)S2
i

N − k
;

i.e., MSE represents a pooled variance.
Maurice Stevenson Bartlett (1910-2002).
Find a Grave, database and images
(https://www.findagrave.com : accessed 17 July
2020), memorial page for Maurice Stevenson
M.S. Bartlett (18 Jun 19108 Jan 2002), Find a
Grave Memorial no. 118588122.

We define

Q := (N − k) lnMSE−
kX

i=1

(ni − 1) lnS2
i :

https://www.findagrave.com/memorial/118588122/maurice-stevenson-bartlett
https://www.findagrave.com/memorial/118588122/maurice-stevenson-bartlett
https://www.findagrave.com/memorial/118588122/maurice-stevenson-bartlett
https://www.findagrave.com/memorial/118588122/maurice-stevenson-bartlett
https://www.findagrave.com/memorial/118588122/maurice-stevenson-bartlett
https://www.findagrave.com/memorial/118588122/maurice-stevenson-bartlett
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Bartlett’s Test for Equality of Variances
The statistic Q is constructed from a so-called likelihood-ratio test. It is
based on the likelihood of obtaining the sample values if H0 is true
compared with the likelihood of obtaining these values if an alternative
hypothesis H1 is true. The ratio of these likelihoods (or its logarithm) is
used to derive a P -value.
Bartlett introduced the correction factor

h := 1 +
1

3(k − 1)

„ kX
i=1

1

ni − 1
− 1

N − k

«
:

With this factor, the Bartlett statistic

B =
Q

h

follows approximately a chi-squared distribution with k − 1 degrees of
freedom. (The exact distribution of B is not known.)
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Bartlett’s Test for Equality of Variances
32.1. Bartlett’s Test. Suppose Y1; : : : ; Yk are normally distributed random
variables. Suppose that samples of size n1; : : : ; nk are taken from each
population and N = n1 + · · ·+ nk . Then we reject

H0 : ff
2
1 = · · · = ff2

k

in favor of

H1 : ff
2
i ̸= ff2

j for at least one pair (i ; j), 1 ≤ i < j ≤ k

at significance level ¸ if the test statistic

B =
Q

h
(32.1)

satisfies B > ffl2
¸;k−1.
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Bartlett’s Test for Equality of Variances
32.2. Example. Continuing from Example 31.6, we first extract the
relevant data from the ANOVA table:
T = ANOVA@Data, CellMeans -> FalseD

ANOVA ®

DF SumOfSq MeanSq FRatio PValue

Model 4 3.93539 0.983848 8.09481 0.0000856622

Error 37 4.497 0.121541

Total 41 8.43239

T@@2DD@@1DD

884, 3.93539, 0.983848, 8.09481, 0.0000856622<, 837, 4.497, 0.121541<, 841, 8.43239<<

T@@2DD@@2DD

TableHeadings ® 88Model, Error, Total<, 8DF, SumOfSq, MeanSq, FRatio, PValue<<

88ΓTr, SSTr, MSTr, F, P<, 8ΓE, SSE, MSE<, 8ΓTot, SSTot<< = T@@2DD@@1DD

884, 3.93539, 0.983848, 8.09481, 0.0000856622<, 837, 4.497, 0.121541<, 841, 8.43239<<

The variances are given by
Variance �� 8x1, x2, x3, x4, x5<

80.175233, 0.143543, 0.1146, 0.122543, 0.0740222<
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Bartlett’s Test for Equality of Variances
We find the statistics necessary for Bartlett’s test:

k = ΓTr + 1;

Q = ΓE Log@MSED - â
i=1

k

Hn@iD - 1L Log@Variance@xiDD

1.51593

h = 1 +

1

3 Hk - 1L
â
i=1

k 1

n@iD - 1
-

1

ΓE

; N@hD

1.05512

B = Q � h

1.43673
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Bartlett’s Test for Equality of Variances
The P -value of the test is given by

1 - CDF@ChiSquareDistribution@k - 1D, BD

0.837786

so we do not reject H0. There is no evidence that any of the variances
differ.
Mathematica also has built-in tests for equality of variances:

The statistic is slightly different from the one we obtained by hand; since
the test is not documented in Mathematica, we are unable to explain this.
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Pairwise Comparisons
Assuming we have established the equality of variances and obtained an
ANOVA table showing a significant difference in the k treatment means,
we want to investigate further. In particular, we would like to know which
particular treatment means differ and which are statistically similar.
The canonical strategy is to then perform pairwise tests, i.e., for all
i ; j = 1; : : : ; k we test

H0 : —i = —j ; H1 : —i ̸= —j :

The total number of tests we need to perform is 
k

2

!
=

k(k − 1)

2
:

We will discuss the consequences of performing so many tests later.
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Fischer’s Least Significant Difference Test
To test for equality of two treatment means —i and —j by the pooled
T -Test 23.5, we would use the statistic

Tni+nj−2 =
Y i · − Y j ·

Sp

q
1
ni
+ 1

nj

where S2
p is the pooled variance obtained from the two treatment samples.

In our situation, however, we can do much better. We have an “pooled
estimate” for the variance that uses all data points, not just those of the
ith and jth treatment, namely cff2 = MSE. Hence,

TN−k =
Y i · − Y j ·r

MSE
“

1
ni
+ 1

nj

”
follows a T -distribution with N − k degrees of freedom.
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Fischer’s Least Significant Difference Test
32.3. Fisher’s Least Significant Difference Test. Suppose that Y i ·,
i = 1; : : : ; k , are the populations means in an ANOVA that yielded a
significant F -test. Then for each i ; j = 1; : : : ; k we reject

H0 : —i = —j in favor of H1 : —i ̸= —j

at significance level ¸ if

|Y i · − Y j ·| > fii j := t¸=2;N−k ·

vuutMSE

 
1

ni
+

1

nj

!
:

Here fii j is called the least significant difference (LSD).
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Controlling Error Rates
When we perform Fisher LSD tests for all possible combinations of means,
we need to be aware of the implications for the Type I error probability.
Suppose we conduct m tests, each at significance level ¸. Then the
probability of committing at least one Type I error is

¸′ := P [at least one Type I error]
= 1− P [no Type I error]
= 1− (1− ¸)m:

if the test are independent. We say that
I ¸ is the comparisonwise error rate,
I ¸′ is the overall or experimentwise error rate.

The experimentwise error rate can become quite large: If we perform
m = 10 tests at a comparisonwise error rate of ¸ = 5%, we obtain an
experimentwise error rate of ¸′ ≈ 40%, an unacceptably high value!
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Bonferroni’s inequality
Even if the tests are not independent, it can be shown that

¸′ ≤ m · ¸:

This inequality is known as Bonferroni’s inequality.

Carlo Emilio Bonferroni (1892-1960).
File:Carlo Emilio Bonferroni.jpg. (2018,
February 17). Wikimedia Commons, the
free media repository.

32.4. Bonferroni’s Test. A Fisher LSD Test of k means
performed at a comparisonwise error rate of

¸ =
¸′

k(k − 1)=2

is said to be a Bonferroni test with controlled experi-
mentwise error rate ¸′¸′¸′.
The least significant differences fii j are sometimes called
Bonferroni critical points.

https://commons.wikimedia.org/w/index.php?title=File:Carlo_Emilio_Bonferroni.jpg&oldid=287671071
https://commons.wikimedia.org/w/index.php?title=File:Carlo_Emilio_Bonferroni.jpg&oldid=287671071
https://commons.wikimedia.org/w/index.php?title=File:Carlo_Emilio_Bonferroni.jpg&oldid=287671071
https://commons.wikimedia.org/w/index.php?title=File:Carlo_Emilio_Bonferroni.jpg&oldid=287671071
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Bonferroni Tests
32.5. Example. Continuing from Example 32.2, we use Mathematica to
perform Bonferroni T tests on our data at an experimentwise significance
level of ¸′ = 0:05.
ANOVA@Data, PostTests ® Bonferroni, SignificanceLevel ® 0.05D

:ANOVA ®

DF SumOfSq MeanSq FRatio PValue

Model 4 3.93539 0.983848 8.09481 0.0000856622

Error 37 4.497 0.121541

Total 41 8.43239

,

CellMeans ®

All 1.18952

Model@1D 1.66

Model@2D 1.17

Model@3D 1.46

Model@4D 0.88

Model@5D 0.88

,

PostTests ® 8Model ® Bonferroni 881, 4<, 83, 4<, 81, 5<, 83, 5<< <>
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Bonferroni Tests
The results of the pairwise comparisons are that there is statistical
evidence that the mean sulphur contents in seams 1 and 3 are different
from those of both seams 4 and 5. There is no evidence that the sulphur
content in seam 2 is different from that of any of the other seams.
If we raise ¸ to 0.10, we obtain the following results:
ANOVA@Data, PostTests ® 8Bonferroni<, CellMeans ® False,

SignificanceLevel ® 0.10D

:ANOVA ®

DF SumOfSq MeanSq FRatio PValue

Model 4 3.93539 0.983848 8.09481 0.0000856622

Error 37 4.497 0.121541

Total 41 8.43239

,

PostTests ® 8Model ® Bonferroni 881, 2<, 81, 4<, 83, 4<, 81, 5<, 83, 5<< <>

At 10% significance we find evidence that the mean sulphur contents of
seams 1 and 2 differ.
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Bonferroni Tests
On the other hand, at ¸ = 0:01, no significant difference between seams 3
and 4 is found:
ANOVA@Data, PostTests ® 8Bonferroni<, SignificanceLevel ® 0.01D

:ANOVA ®

DF SumOfSq MeanSq FRatio PValue

Model 4 3.93539 0.983848 8.09481 0.0000856622

Error 37 4.497 0.121541

Total 41 8.43239

,

CellMeans ®

All 1.18952

Model@1D 1.66

Model@2D 1.17

Model@3D 1.46

Model@4D 0.88

Model@5D 0.88

,

PostTests ® 8Model ® Bonferroni 881, 4<, 81, 5<, 83, 5<< <>

This is the case even though there is a significant difference between seams
3 and 5 and Y 4· = Y 5·. Can you explain this?
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Bonferroni Tests
Let us verify Mathematica’s calculations:
Mathematica has performed a total of

`k
2

´
= 5·4

2 = 10 pairwise
comparisons, each at a fixed level of ¸. If we desire an experimentwise
error of ¸′ = 0:01, we need to select a comparisonwise error

¸ =
0:01

10
= 0:001

The corresponding critical point t¸=2;N−k is given by
t = InverseCDF[StudentTDistribution[γE],

1 - α / 2] /. α → 0.01 / 10

3.57367

The Bonferroni critical points are found from

Τ@i_, j_D := t MSE

1

n@iD
+

1

n@jD
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Bonferroni Tests
We then obtain a table of Bonferroni critical points as follows:

TableForm@Table@Round@Τ@i, jD, 0.001D, 8j, 1, k<, 8i, 1, j<D,
TableHeadings ® 88"1", "2", "3", "4", "5"<,

8"1", "2", "3", "4", "5"<<D

1 2 3 4 5

1 0.666

2 0.645 0.623

3 0.628 0.605 0.587

4 0.645 0.623 0.605 0.623

5 0.614 0.591 0.572 0.591 0.557

Since 1:46− 0:88 = 0:58 we see that, indeed, the sulphur contents of
seams 3 and 5 differ while those of 3 and 4 do not.
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Bonferroni Tests
At an experimentwise error of 1%, we have concluded that

There is evidence that the sulphur contents in seams 3 and 5, 1
and 5 as well as in 1 and 4 are significantly different.

This statement has a 1% chance of being in error.
When performing Bonferroni pairwise comparisons, you should respect the
following:
I Either choose which pairwise comparisons you wish to do before you

obtain the experimental data or test all possible
`k
2

´
comparisons. It is

forbidden to select which means to compare after you have obtained
the data. (Why?)

I It is best to first perform an ANOVA F -test to see if there are any
significant differences. The pairwise Bonferroni tests are then said to
be protected Bonferroni tests.

Bonferroni tests are among the most conservative tests for individual
comparisons. We will now discuss a different approach.
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Studentized Ranges
We first introduce the concept of the studentized sample range: if
X1; : : : ; Xk is a random sample of size k from a normal distribution with
variance ff2, we define the studentized range as

Rk =
max{X1; : : : ; Xk} −min{X1; : : : ; Xk}

ff̂

where ff̂2 is an estimator for ff2. For example, one could take the usual
sample standard deviation,

ff̂ = S =

vuut 1

k − 1

kX
i=1

(Xi − X)2:

In general, a statistic is said to be studentized if it is divided by an
estimate for the appropriate standard deviation.



ANOVA II: Homoscedasticity and Post-Tests Slide 815

Least Significant Studentized Ranges
The probability distribution of Rk can be calculated. We are interested
primarily in the critical values rk;‚;¸, defined by

P [Rk > rk;‚;¸] = ¸:

The critical values are called the upper quantiles of the least significant
studentized ranges. Here k is the sample size, 0 < ¸ < 1 and ‚ is the
degree of freedom of ff̂.
It turns out that the rk;‚;¸; do not depend on the mean — or the true value
of ff2, nor do they depend on the precise estimator ff̂2.
However, they do depend on the degrees of freedom ‚ of ff̂!
A useful table of values for the studentized ranges may be found at Prof.
Tetsuhisa Miwa’s website:
Statistical Tables: http://www2.accsnet.ne.jp/∼miwa/probcalc/index.html

http://www2.accsnet.ne.jp/~miwa/probcalc/index.html
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Studentized Ranges for ANOVA Population Means
Suppose that the null hypothesis H0 : —1 = —2 = · · · = —k is true and that
the sample sizes are equal, ni = n, i = 1; : : : ; k . Then the obtained sample
means Y i · constitute a sample of size k from the random variable X.
Since X has variance given by ff2=n, we can estimate it by MSE =n and
consider the studentized range

Rk =
max{Y 1·; : : : ; Y k·} −min{Y 1·; : : : ; Y k·}p

MSE =n

With probability 1− ¸, all means will satisfy

|Y i · − Y j ·| ≤ rk;N−k;¸

q
MSE =n (32.2)

where rk;¸;N−k are the upper quantiles of the least significant studentized
ranges. Based on this, we reject H0 : —i = —j for any i ; j if the inequality
(32.2) is violated.
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Tukey’s Honestly Significant Difference (HSD) Test
We can further extend this method to unequal sample sizes by replacing n
with the harmonic mean

1

n∗
=

1

2

 
1

ni
+

1

nj

!
⇔ n∗ =

2ninj
ni + nj

:

32.6. Tukey’s Honestly Significant Difference Test. Suppose that Y i ·,
i = 1; : : : ; k , are the populations means in an ANOVA that yielded a
significant F -test. Then for each i ; j = 1; : : : ; k we reject

H0 : —i = —j

at an experimentwise error rate ¸′ if

|Y i · − Y j ·| > rk;N−k;¸′

vuutMSE
2

 
1

ni
+

1

nj

!
:
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Tukey’s HSD Test
32.7. Example. Continuing with the data of Example 32.5, we now
compare means using Tukey’s test with an experimentwise error of
¸′ = 0:01. We need the least significant studentized range

r5;37;0:01 = 4:96:

We find the critical differences via

r@i_, j_D := 4.96
MSE

2

1

n@iD
+

1

n@jD
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Tukey’s HSD Test
We have
TableForm@Table@Table@Round@r@i, jD, 0.001D, 8i, 1, j<D, 8j, 1, k<D,

TableHeadings ® 88"1", "2", "3", "4", "5"<,
8"1", "2", "3", "4", "5"<<D

1 2 3 4 5

1 0.654

2 0.633 0.611

3 0.616 0.594 0.576

4 0.633 0.611 0.594 0.611

5 0.603 0.58 0.562 0.58 0.547

Comparing with

Y 4· = 0:88; Y 5· = 0:88; Y 2· = 1:17; Y 3· = 1:46; Y 1· = 1:66;

we find that there are significant differences between the means 1↔ 4 and
1↔ 5 as well as 3↔ 5 but not 3↔ 4.
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Tukey’s HSD Test
This agrees with Mathematica’s result:
ANOVA@Data, PostTests ® Tukey, CellMeans ® False,

SignificanceLevel ® 0.01D

:ANOVA ®

DF SumOfSq MeanSq FRatio PValue

Model 4 3.93539 0.983848 8.09481 0.0000856622

Error 37 4.497 0.121541

Total 41 8.43239

,

PostTests ® 8Model ® Tukey 881, 4<, 81, 5<, 83, 5<< <>
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Other Post-ANOVA Comparison Tests
The tests by Fisher (modified according to Bonferroni) and Tukey
represent the basic types of comparison tests: usually, one considers either
a T -test or a test based on the studentized range. Such test are called
post-tests or post hoc tests. There are many refinements, named after
Dunnet, Sheffé and others. Here, we will only give one example.
Suppose that all treatment sample sizes are equal n1 = · · · = nk =: n.
Then the Tukey (or Bonferroni) critical points will be the same for all
i ; j = 1; : : : ; k , so we denote it by fi . We will reject H0 : —i = —j if

|Y i · − Y j ·| > fi

independent of i ; j . In particular, if we order our sample means from
smallest to largest, it does not matter whether Y i · and Y j · are adjacent or
far from each other in this list; only the difference in size counts.
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Duncan’s New Multiple Range Test
Suppose we are comparing means of six populations and
take samples of equal sizes, obtaining the following means
Y i ·, i = 1; : : : ; 6:

Suppose that |Y 5· − Y 1·| = |Y 6· − Y 5·|. We test

H0 : —1 = —5 and H0 : —5 = —6:

David B. Duncan (1916-2006).
“DAVID DUNCAN Faculty Member:
1960-1984”, Johns Hopkins Bloomberg
School of Public Health, Department of
Biostatistics, Web.

Given equal sample sizes, Tukey’s test would yield identical critical points
for both tests.
However, it might seem more plausible that —6 > —5 than that —5 > —1.
Thus, it should perhaps be made more difficult to reject H0 : —1 = —5 than
to reject H0 : —5 = —6. This is the idea pursued by Duncan’s test, which
assigns adjusted critical values based on the proximity of the means.

https://www.jhsph.edu/departments/biostatistics/about-us/history/david-duncan.html
https://www.jhsph.edu/departments/biostatistics/about-us/history/david-duncan.html
https://www.jhsph.edu/departments/biostatistics/about-us/history/david-duncan.html
https://www.jhsph.edu/departments/biostatistics/about-us/history/david-duncan.html
https://www.jhsph.edu/departments/biostatistics/about-us/history/david-duncan.html
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Duncan’s New Multiple Range Test
Duncan’s test modifies Tukey’s test as follows: instead of conducting
pairwise comparisons, we compare groups of means at once. For this
reason it is said to be a multiple range test.
For each group, we calculate the critical point in essentially the same way
as for Tukey’s test, but we use a modification of the least significant range
r ′p;N−k¸′ and choose p according to the number p of means in the group,
not according to the number k of means in total (as Tukey’s test does).
If we find no significant difference between the largest and the smallest
element of a group, we conclude that there is no difference in means
between any of the group elements. This reasoning assumes equal sample
sizes, since then the critical points will depend only on the number of
elements in the group.
The critical values for Duncan’s test may be found at Prof. Tetsuhisa
Miwa’s website:
Statistical Tables: http://www2.accsnet.ne.jp/∼miwa/probcalc/index.html

http://www2.accsnet.ne.jp/~miwa/probcalc/index.html
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Duncan’s New Multiple Range Test
32.8. Example. Suppose we have the following data:

Population i Response Yi j

1 0.30 0.64 0.68 0.53 0.78 0.84
2 0.69 1.08 1.30 1.11 0.51 0.96
3 0.96 0.93 1.02 1.19 0.89 1.33
4 1.21 0.96 1.02 1.17 1.28 1.36
5 1.70 1.16 0.95 1.18 1.56 1.07
6 1.52 1.34 1.58 1.41 1.39 1.46

We find
Y 1· = 0:63; Y 2· = 0:94; Y 3· = 1:05;

Y 4· = 1:17; Y 5· = 1:27; Y 6· = 1:45:

and
MSE = 0:0450:
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Duncan’s New Multiple Range Test
We have k = 6 populations with n = 6 measurements each, so N = 36 and
N − k = 30. The least significant ranges for ¸ = 0:01 and 30 degrees of
freedom are given by

r ′2;30;0:01 = 3:889; r ′3;30;0:01 = 4:056; r ′4;30;0:01 = 4:168;

r ′5;30;0:01 = 4:250; r ′6;30;0:01 = 4:314:

The critical differences are given by dp = r ′p;0:01;30
p
MSE =n, i.e.,

d2 = 0:337; d3 = 0:351; d4 = 0:361; d5 = 0:368; d6 = 0:373:

For simplicity, we have already arranged the sample means in increasing
order. We first consider the group of all six means. The difference between
the smallest and the largest is

Y 6· − Y 1· = 1:45− 0:63 = 0:82 > d6 = 0:373

so we conclude that there is a significant difference among the means.
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Duncan’s New Multiple Range Test
Next, we consider two groups of five means,

Y 5· − Y 1· = 1:27− 0:63 = 0:64 > d5 = 0:368;

Y 6· − Y 2· = 1:45− 0:94 = 0:51 > d5 = 0:368;

so there significant differences in these groups also. We next test groups of
four means,

Y 4· − Y 1· = 1:17− 0:63 = 0:64 > d4 = 0:361;

Y 6· − Y 3· = 1:45− 1:05 = 0:40 > d4 = 0:361;

Y 5· − Y 2· = 1:27− 0:94 = 0:33 ̸> d4 = 0:361:

We stop testing those groups were there are no significant differences
among the means. This leaves

Y 6· − Y 4· = 1:45− 1:17 = 0:28 ̸> d2 = 0:337;

Y 3· − Y 1· = 1:05− 0:63 = 0:42 > d3 = 0:337;

Y 2· − Y 1· = 1:05− 0:94 = 0:11 ̸> d2 = 0:337:
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Duncan’s New Multiple Range Test
We summarize by underlining those groups of means that are not
significantly different:

Y 1· Y 2· Y 3· Y 4· Y 5· Y 6·

We conclude: there is evidence that —1 is significantly smaller that
—3; —4; —5 and —6. Furthermore, —2 and —3 are significantly smaller than
—6. There is no significant difference between any other means.
Note that populations that are underlined more than once, i.e., belonging
to more than one group of significantly different means, represent Type II
errors; a significant difference from one or two groups was not detected.
Note that we performed far fewer than 6 · 5=2 = 15 tests and that our test
were more liberal than in Tukey’s procedure. For example, we found a
significant difference between —1 and —3 only because we used a critical
difference stemming from a least significant range for n = 3 instead of
n = 6.
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Duncan’s New Multiple Range Test
Mathematica agrees with our results:
ANOVA@Data, PostTests ® Duncan, SignificanceLevel ® 0.01D

:ANOVA ®

DF SumOfSq MeanSq FRatio PValue

Model 5 2.42527 0.485053 10.7947 5.26828 ´ 10-6

Error 30 1.34803 0.0449344

Total 35 3.7733

,

CellMeans ®

All 1.085

Model@1D 0.628333

Model@2D 0.941667

Model@3D 1.05333

Model@4D 1.16667

Model@5D 1.27

Model@6D 1.45

,

PostTests ® 8Model ® Duncan 881, 3<, 81, 4<, 81, 5<, 81, 6<, 82, 6<, 83, 6<<<>
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Duncan’s New Multiple Range Test
Tukey’s test does not find a difference between —3 and any other means:
ANOVA@Data, PostTests ® Tukey, SignificanceLevel ® 0.01D

:ANOVA ®

DF SumOfSq MeanSq FRatio PValue

Model 5 2.42527 0.485053 10.7947 5.26828 ´ 10-6

Error 30 1.34803 0.0449344

Total 35 3.7733

,

CellMeans ®

All 1.085

Model@1D 0.628333

Model@2D 0.941667

Model@3D 1.05333

Model@4D 1.16667

Model@5D 1.27

Model@6D 1.45

,

PostTests ® 8Model ® Tukey 881, 4<, 81, 5<, 81, 6<, 82, 6<< <>
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Duncan’s New Multiple Range Test
Mathematica agrees with our results:
ANOVA@Data, PostTests ® Duncan, SignificanceLevel ® 0.01D

:ANOVA ®

DF SumOfSq MeanSq FRatio PValue

Model 5 2.42527 0.485053 10.7947 5.26828 ´ 10-6

Error 30 1.34803 0.0449344

Total 35 3.7733

,

CellMeans ®

All 1.085

Model@1D 0.628333

Model@2D 0.941667

Model@3D 1.05333

Model@4D 1.16667

Model@5D 1.27

Model@6D 1.45

,

PostTests ® 8Model ® Duncan 881, 3<, 81, 4<, 81, 5<, 81, 6<, 82, 6<, 83, 6<<<>
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Duncan’s New Multiple Range Test
Tukey’s test does not find a difference between —3 and any other means:
ANOVA@Data, PostTests ® Tukey, SignificanceLevel ® 0.01D

:ANOVA ®

DF SumOfSq MeanSq FRatio PValue

Model 5 2.42527 0.485053 10.7947 5.26828 ´ 10-6

Error 30 1.34803 0.0449344

Total 35 3.7733

,

CellMeans ®

All 1.085

Model@1D 0.628333

Model@2D 0.941667

Model@3D 1.05333

Model@4D 1.16667

Model@5D 1.27

Model@6D 1.45

,

PostTests ® 8Model ® Tukey 881, 4<, 81, 5<, 81, 6<, 82, 6<< <>
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Conclusion
The preceding pairwise tests should have shown that, in statistics, there is
always more than one way to analyze a problem and it is sometimes a
matter of opinion, personal preference, context, external circumstances or
even dispute which procedure should be used.
Furthermore, while performing a single hypothesis test may be
straightforward, on reflection it becomes clear that practical situations
often call for several tests to be performed. In such cases, a detailed
testing plan is necessary to preserve the significance (pardon the pun!) of
the calculated P -values.
In future courses, you will perhaps have the opportunity to learn more
about the many topics that we have only inadequately introduced. Even if
not, hopefully your understanding of the basic questions in statistics will
allow you to approach questions of data science, experimental design, and
testing and general statistical procedures with curiosity and an informed
skepticism.
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