Ve401 Probabilistic Methods in Engineering

Summer 2021 — Assignment 10

Date Due: 6:00 PM, Friday, the 30th of July 2021

This assignment has a total of (50 Marks).

Note: For all exercises in this assignment, you may use Mathematica to perform calculations, obtain statistics and graphs, etc.

Exercise 10.1 Simple Linear Regression

An article in the Journal of the American Statistical Association [Markov Chain Monte Carlo Methods for Computing Bayes Factors: A Comparative Review (2001, Vol. 96, pp. 11221132)] analyzed the tabulated data on compressive strength parallel to the grain versus resin-adjusted density for specimens of radiata pine.

Compressive Strength	Density	Compressive Strength Density		Compressive Strength	Density
3040	29.2	1740	22.5	1670	22.1
3840	30.7	2250	27.5	3310	29.2
2470	24.7	2650	25.6	3450	30.1
3610	32.3	4970	34.5	3600	31.4
3480	31.3	2620	26.2	2850	26.7
3810	31.5	2900	26.7	1590	22.1
2330	24.5	1670	21.1	3770	30.3
1800	19.9	2540	24.1	3850	32.0
3110	27.3	3800	32.7	2480	23.2
3160	27.1	4600	32.6	3570	30.3
2310	24.0	1900	22.1	2620	29.9
4360	33.8	2530	25.3	1890	20.8
1880	21.5	2920	30.8	3030	33.2
3670	32.2	4990	38.9	3030	28.2

i) Fit a linear regression model for the dependence of the compressive strength $Y \mid x$ on the density x. (1 Mark)

- ii) Estimate σ^2 for this model. (1 Mark)
- iii) Find 90% confidence intervals for the slope and the intercept. (2 Marks)
- iv) Test for significance of regression. (1 Mark)
- v) Calculate R^2 for this model. Provide an interpretation of this quantity. (2 Marks)
- vi) Plot the residuals e_i versus the density x_i . Does the assumption of constant variance seem to be satisfied? (2 Marks)

Exercise 10.2 Testing for Lack of Fit

In the experiment "Simple Harmonic Motion: Oscillations in Mechanical Systems" of the course Vp141 Physics Lab I, the spring coefficient is measured by using a Jolly balance. A spring is attached to the Jolly balance and weights are added to extend the spring. The extension L of the Jolly balance (not the actual spring extension) is recorded. For one spring the data (rounded) was obtained by two groups:

Grou	ıр 1	Group 2			
L[cm]	m[g]	L[cm]	m[g]		
$\begin{array}{c} 4.88 \\ 6.92 \end{array}$	0 4.7	$4.95 \\ 7.00$	0 4.7		
8.99	9.5	9.10	9.5		
$\begin{array}{c} 11.09\\ 13.18 \end{array}$	$\begin{array}{c} 14.3 \\ 19.1 \end{array}$	$11.20 \\ 13.30$	$\begin{array}{c} 14.3 \\ 19.1 \end{array}$		
15.18 15.26	$19.1 \\ 23.9$	$15.30 \\ 15.41$	19.1 24.0		
17.39	28.7	17.51	28.7		

Use Mathematica to do the following exercises:

- i) For the given data, perform a simple linear regression for the random variable L as a function of the (non-random) parameter m. Plot the regression line. (2 Marks)
- ii) Calculate the value of R^2 and check for significance of regression. (2 Marks)
- iii) Perform a test for lack of fit. Is the linear model appropriate? (2 Marks)

(Many thanks to Li Yingyu, Teaching Assistant for Vp241, for providing the data and advice on the experiment.)

Exercise 10.3 Analysis of the Model Decomposition in Multiple Linear Regression Recall that

$$P = \frac{1}{n} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}, \qquad \qquad H = X(X^T X)^{-1} X^T$$

where X is the model specification matrix for multiple linear regression.

i) Show that PH = HP = P. Conclude that H - P is an orthogonal projection and that

$$SSR = \langle (H - P)Y, (H - P)Y \rangle.$$

(2 Marks)

- ii) Show that $\operatorname{tr} P = 1$ and conclude $\operatorname{tr}(H P) = p$. (1 Mark)
- iii) Follow the steps in the lecture slides to show that if $\beta = (\beta_0, 0, \dots, 0)$ (i.e., if $\beta_1 = \dots = \beta_p = 0$), then SSR $/\sigma^2$ follows a chi-squared distribution with p degrees of freedom. (3 Marks)
- iv) Show that $(\mathbb{1} H)(P H) = (P H)(\mathbb{1} H) = 0$. Deduce that

$$\operatorname{ran}(P-H) \subset \ker(\mathbb{1}-H)$$
 and $\operatorname{ran}(\mathbb{1}-H) \subset \ker(P-H)$.

Explain why this means that the eigenvectors of H - P for the eigenvalue 1 are also eigenvectors of $\mathbb{1} - H$ for the eigenvalue 0 and vice-versa. Construct a matrix U which diagonalizes both P-H and $\mathbb{1}-H$. Use U to show that SSR and SSE are the sums of squares of independent standard normal variables. Deduce that SSR and SSE are independent. (5 Marks)

Exercise 10.4 Polynomial Regression

An article entitled A Method for Improving the Accuracy of Polynomial Regression Analysis in the Journal of Quality Technology (1971, pp. 149155) reported the following data for the dependence of the ultimate shear strength of a rubber compound (y, in psi) on the cure temperature $(x, \,^{\circ}\text{F})$.

y	770	800	840	810	735	640	590	560
x	280	284	292	295	298	305	308	315

You are encouraged to use Mathematica to help with the calculations in the following exercises. Include a printout of your calculations with your submitted answers.

- i) Fit the quadratic model $Y = \beta_0 + \beta_1 x + \beta_2 x^2 + E$ to these data. (2 Marks)
- ii) Test for significance of regression. What is the *P*-value you obtain? (2 Marks)
- iii) Test the hypothesis that $\beta_2 = 0$. What is the *P*-value you obtain? (2 Marks)
- iv) Plot the residuals and comment on model adequacy. (2 Marks)
- v) Give confidence intervals for β_0 , β_1 and β_2 . (3 Marks)
- vi) Give a prediction interval for Y when $x = 285^{\circ}$ F. (1 Mark)

When fitting polynomial regression models, we often subtract \overline{x} from each x value to produce a "standardized" regressor $x' := (x - \overline{x})/s_x$, where s_x is the standard deviation of x. This reduces the effects of dependencies among the model terms and often leads to more accurate estimates of the regression coefficients.

- vii) Fit the standardized model $Y = \beta_0^* + \beta_1^* x' + \beta_2^* (x')^2 + E$. (2 Marks)
- viii) Use the standardized model to give confidence intervals for β_0 , β_1 and β_2 . (3 Marks)
- ix) Use the standardized model to give a prediction interval for Y when $x = 285^{\circ}$ F. (1 Mark)
- x) What can you say about the relationship between SSE and R² for the standardized and unstandardized models?
 (3 Marks)
- xi) Suppose that $y' = (y \overline{y})/s_y$ is used in the model along with x'. Fit the model and comment on the relationship between SSE and R^2 in the standardized and unstandardized model. (3 Marks)

